Cho tam giác ABC vuông tại A có góc B > góc C. AH vuông góc BC ( H thuộc BC). So sánh AH và HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét t/giác ABC có AB>AC
⇒ ACB>ABC(quan hệ giữa góc và cạnh đối diện)
b) Ta có: AB > AC (gt)
⇒ HB > HC (quan hệ giữa hình xiên và đường chiếu của chúng)
1:
Xét ΔABD và ΔACE có
AB=AC
góc B=góc C
BD=CE
=>ΔABD=ΔACE
=>AD=AE
2:
a: H là trung điểm của DB
=>D thuộc tia đối của tia HB
=>D thuộc HC
b: góc KCD=góc DAH
góc DAH=góc CED
=>góc KCD=góc CED
Xét ΔCED vuông tại E và ΔCKD vuông tại K có
CD chung
góc ECD=góc KCD
=>ΔCED=ΔCKD
=>DE=DK
Xét ΔDBH vuông tại D và ΔECH vuông tại E có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔDBH=ΔECH
Suy ra: HD=HE
mà HE<HC
nên HD<HC
a: Xét ΔADC có
\(\widehat{ADC}+\widehat{DAC}+\widehat{C}=180^0\)
\(\Leftrightarrow\widehat{ADH}=180^0-30^0-45^0\)
hay \(\widehat{ADH}=105^0\)
Xét tam giác ABH và tam giác ACH
AB=AC(GT)
^AHB=^AHC=90o
^ABH=^ACH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác ABH = tam giác ACH
=> HB=HC ( 2c tứ)
có HB+HC=BC
mà BC=8 cm
HB=HC
=> HB=HC=4cm
Xét tam giác ABH : ^H=90o
=> AB2+AH2+BH2(đ/lý pythagoras)
thay số ta có :
52=AH2+42
25-16=AH2
9=AH2
3=AH
c)Xét tam giác BDH và tam giác ECH
^BDH= ^ HEC =90o
BH=CH
^DBH=^ECH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác BDH = tam giác ECH
=> DH=EH
=> HDE CÂN TẠI H (Đ/N)
d) qua tia đối của DH ; kẻ HK sao cho HK= DH
CÓ : tam giác HCK có cạnh HK là cạnh lớn nhất ( cạnh huyền) => HK > HC
mà HD=HK
=> HD>HC
tự vẽ hình nha!^^
1/a/ vì AB<AC(gt)\(\Rightarrow\)\(\widehat{B}< \widehat{C}\)(theo tính chất)
b)ta có:\(\widehat{BAH}+\widehat{AHB}+\widehat{B}=180\)độ
\(\widehat{CAH}+\widehat{AHC}+\widehat{C}=180\)độ
mà \(\widehat{B}< \widehat{C}\)(theo câu a)) và \(\widehat{AHB}=\widehat{AHC}=90\)độ
\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)\(\Rightarrow HB< HC\)(tính chất)
2/a/\(Xét\Delta ABIva\Delta HBIcó:\)
góc BAI=BHI=90 độ
BỊ chung;góc B1=góc B2
Vậy \(\Delta ABI=\Delta HBI\left(ch-gn\right)\)
b/ vì IA=IH(do tgiac ABI=tgiac HBI)
Vậy tam giác AIH cân tại I
c/Vì AB=AH(do tam giác BIA= tam giác BIH)
\(\Rightarrow\)tam giác BAH cân tại B
mà BỊ là đường phân giác nên suy ra cũng là đường trung trực (theo tính chất của các đường trong tam giác cân)
\(\Rightarrow\)BI là đường trung trực của đoạn thẳng AH(đpcm)
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Xét tam giác ABC có A = 90 độ => B + C = 90 độ
Xét tam giác AHC có AHC = 90 độ => C + CAH = 90 độ
Do đó B = CAH
Mà B > C => CAH > C
Xét tam giác AHC có CAH > C => HC > AH (quan hệ giữa góc và cạnh đối diện)