K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2023

\(A=5+2xy+14y-x^2-5y^2-2x\)

\(A=-x^2+2xy-2x-y^2+2y-1-4y^2+12y-9+15\)

\(A=-\left[x^2-2x\left(y-1\right)+\left(y-1\right)^2\right]-\left(2y-3\right)^2+15\)

\(A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\)

Mà: \(\left\{{}\begin{matrix}-\left(x-y+1\right)^2\le0\\-\left(2y-3\right)^2\le0\end{matrix}\right.\Rightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\le15\) 

Dấu "=" xảy ra khi:

\(y=\dfrac{3}{2};x=\dfrac{1}{2}\)

Vậy: \(A_{min}=15\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\)

25 tháng 10 2020

1. \(A=2x^2-6x-2xy+y^2+10\)

\(\Leftrightarrow A=\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)+1\)

\(\Leftrightarrow A=\left(x-y\right)^2+\left(x-3\right)^2+1\)

\(\left(x-y\right)^2\ge0\) ; \(\left(x-3\right)^2\ge0\)\(\forall x;y\)

\(\Rightarrow A=\left(x-y\right)^2+\left(x-3\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=3\)

Vậy minA = 1 \(\Leftrightarrow x=y=3\)

2. \(A=5+2xy+14y-x^2-5y^2-2x\)

\(\Leftrightarrow A=-\left(x^2-2xy+y^2+2x-2y+1\right)-\left(4y^2-12y+9\right)+15\)

\(\Leftrightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\)

\(\left\{{}\begin{matrix}\left(x-y+1\right)^2\ge0\\\left(2y-3\right)^2\ge0\end{matrix}\right.\)\(\forall x;y\)

\(\Rightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\le15\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(2y-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{3}{2}\end{matrix}\right.\)

Vậy maxA = 15 \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{3}{2}\end{matrix}\right.\)

26 tháng 11 2020

1. A=2x2−6x−2xy+y2+10A=2x2−6x−2xy+y2+10

⇔A=(x2−2xy+y2)+(x2−6x+9)+1⇔A=(x2−2xy+y2)+(x2−6x+9)+1

⇔A=(x−y)2+(x−3)2+1⇔A=(x−y)2+(x−3)2+1

(x−y)2≥0(x−y)2≥0 ; (x−3)2≥0(x−3)2≥0∀x;y∀x;y

⇒A=(x−y)2+(x−3)2+1≥1⇒A=(x−y)2+(x−3)2+1≥1

Dấu "=" xảy ra ⇔{(x−y)2=0(x−3)2=0⇔x=y=3⇔{(x−y)2=0(x−3)2=0⇔x=y=3

Vậy minA = 1 ⇔x=y=3⇔x=y=3

2. A=5+2xy+14y−x2−5y2−2xA=5+2xy+14y−x2−5y2−2x

⇔A=−(x2−2xy+y2+2x−2y+1)−(4y2−12y+9)+15⇔A=−(x2−2xy+y2+2x−2y+1)−(4y2−12y+9)+15

⇔A=−(x−y+1)2−(2y−3)2+15⇔A=−(x−y+1)2−(2y−3)2+15

{(x−y+1)2≥0(2y−3)2≥0{(x−y+1)2≥0(2y−3)2≥0∀x;y∀x;y

⇒A=−(x−y+1)2−(2y−3)2+15≤15⇒A=−(x−y+1)2−(2y−3)2+15≤15

Dấu "=" xảy ra ⇔{(x−y+1)2=0(2y−3)2=0⇔{x−y=−1y=32⇔{x=12y=32⇔{(x−y+1)2=0(2y−3)2=0⇔{x−y=−1y=32⇔{x=12y=32

Vậy maxA = 15 ⇔{x=12y=32

20 tháng 8 2017

1) \(a^2+\frac{1}{a^2}=14\Leftrightarrow a^2+\frac{1}{a^2}+2a.\frac{1}{a}=16\Leftrightarrow\left(a+\frac{1}{a}\right)^2=16\Rightarrow a+\frac{1}{a}=4\)

\(\Rightarrow\left(a+\frac{1}{a}\right)\left(a^2+\frac{1}{a^2}\right)=a^3+\frac{1}{a}+a+\frac{1}{a^3}=a^3+4+\frac{1}{a^3}=4.14=56\)

\(\Rightarrow a^3+\frac{1}{a^3}=52\)

Ta có : \(\left(a^2+\frac{1}{a^2}\right)\left(a^3+\frac{1}{a^3}\right)=a^5+\frac{1}{a}+a+\frac{1}{a^5}=a^5+4+\frac{1}{a^5}=14.52\)

\(\Rightarrow a^5+\frac{1}{a^5}=14.52-4=724\)

2) \(A=2xy-x^2-4y^2+2x+10y-2000\)

\(=\left(-x^2+2xy-y^2\right)+\left(2x-2y\right)+\left(-3y^2+12y-12\right)-1988\)

\(=-\left(x-y\right)^2+2\left(x-y\right)-1-3\left(y^2-4y+4\right)-1987\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2-1987\le-1987\forall x;y\) có GTLN là 2013

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy \(A_{max}=-1987\) tại \(x=3;y=2\)

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

12 tháng 7 2016

B= \(\frac{7}{4}\)

C= \(\frac{1}{2}\)

13 tháng 7 2016

bạn có thể nói rõ cách làm không

NV
26 tháng 12 2022

\(A=-\left(x^2+2xy+y^2\right)-\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{8089}{4}\)

\(A=-\left(x+y\right)^2-\left(y-\dfrac{1}{2}\right)^2+\dfrac{8089}{4}\)

Do \(\left\{{}\begin{matrix}-\left(x+y\right)^2\le0\\-\left(y-\dfrac{1}{2}\right)^2\le0\end{matrix}\right.\) ; \(\forall x;y\)

\(\Rightarrow A\le\dfrac{8089}{4};\forall x;y\)

Vậy \(A_{max}=\dfrac{8089}{4}\) khi \(\left\{{}\begin{matrix}x+y=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)

21 tháng 10 2023

\(A=-x^2+2xy-4y^2+2x+10y-3\)

\(=-x^2+2xy-y^2+2x-2y-1-3y^2+12y-12+10\)

\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)+10\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10< =10\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y+1=3\end{matrix}\right.\)

\(B=-4x^2-5y^2+8xy+10y+12\)

\(=-4x^2+8xy-4y^2-y^2+10y-25+37\)

\(=-4\left(x^2-2xy+y^2\right)-\left(y^2-10y+25\right)+37\)

\(=-4\left(x-y\right)^2-\left(y-5\right)^2+37< =37\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\)

=>x=y=5

 

19 tháng 4 2019

A = -x2 - 3y2 - 2xy + 10x + 14y - 18

A = -x2 - y2 -25 + 10x +10y -2xy -2y2 + 4y -2 + 9

A = -(x2 + y2 + ( -5 )2 - 10x - 10y + 2xy ) - 2 (y2 - 2y + 1 )  + 9

A = -( x + y - 5 )2 - 2 ( y - 1 )2 + 9 

-( x + y - 5 )2  \(\le\)0 ; - 2 ( y - 1 )2 \(\le\)0

\(\Rightarrow\)A  \(\le\)0 + 0 + 9 = 9

Dấu " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+y-5=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}}\)

a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)

nên Dấu '=' xảy ra khi x-2=0

hay x=2

Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2

28 tháng 4 2019

\(A=\left(-x^2-2xy-y^2\right)-2y^2+\left(10x+10y\right)+4y-18\)

\(=-\left(x+y\right)^2+2\left(x+y\right).5-\left(2y^2-4y+2\right)-16\)

\(=-\left[\left(x+y\right)^2-2\left(x+y\right).5+5^2\right]-2\left(y-1\right)^2+9\)

\(=-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\le9\forall x;y\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y-5=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5-y\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)

Vậy \(A_{max}=9\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)

14 tháng 4 2020

ko biết