K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

Kẻ AD = DC. Lấy điểm I sao cho AI = 1/3AD
~Ủng hộ mk nha!~
 

26 tháng 7 2017

sorry, i cant do it

26 tháng 7 2017

sorry, i cant do it

29 tháng 7 2017

a)

Có IA=IB suy ra I thuộc trung trực BC.

8 tháng 7 2017

Hỏi thầy Bách ý tao còn câu 2

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔIHB vuông tại H và ΔIHC vuông tại H có 

IH chung

BH=CH(cmt)

Do đó: ΔIHB=ΔIHC(Hai cạnh góc vuông)

Suy ra: IB=IC(hai cạnh tương ứng)

b) Ta có: IB=ID(gt)

mà B,I,D thẳng hàng(gt)

nên I là trung điểm của BD

Ta có: AH+BD

\(=2\cdot AI+2\cdot BI\)

=2(AI+BI)

mà AI+BI>AB(BĐT trong tam giác ABI)

nên \(AH+BD>2AB\)

\(\Leftrightarrow AH+BD>AB+AC\)(đpcm)

 

19 tháng 8 2021

mình nghĩ là đề bài này bị sai hay sao đó, vì theo đề bài thì điểm M sẽ trùng với điểm I ( AD và BC đều vuông góc tại M và I ) . bạn có thể thử sửa đề thành : " qua N kẻ đường thẳng vuông góc với AD ,cắt đường thẳng M vuông góc với BC tại I " ( mình không chắc lắm nhưng mà bạn có thể thử .

24 tháng 8 2021

Ok

mình sửa

5 tháng 2 2022

Giúp mk với các bạn ơi

 

18 tháng 5 2019

Do hình thang AEFD và hình thang BCFE có cùng đường cao, suy ra S A E F D = S B C F E ⇔ D F = A B + D C 2 − A E  

Cách dựng: Vẽ đường trung bình MN, trên đó lấy MK = AE. Từ K vẽ đường song song với BC cắt CD tại F cần tìm

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E