K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2019

Do hình thang AEFD và hình thang BCFE có cùng đường cao, suy ra S A E F D = S B C F E ⇔ D F = A B + D C 2 − A E  

Cách dựng: Vẽ đường trung bình MN, trên đó lấy MK = AE. Từ K vẽ đường song song với BC cắt CD tại F cần tìm

15 tháng 6 2019

a) Xét tam giác ABC và tam giác BAD, ta có:

AB: cạnh chung

AC=AD (ABCD:hình thang cân)

BC=AD (ABCD: hình thang cân)

  =>Tam giác ABC = tam giác BAD (c-c-c)

  =>\(\widehat{ACB}\)=\(\widehat{BDA}\)(2 góc t/ứng)

  Ta có:

\(\widehat{ACD=}\widehat{ACB}\)+\(\widehat{BCD}\)

BDC^ = BDA^ + ADC^

ACD^ = BDC^ (ABCD: hình thang cân)

ACB^ = BDA^ (cmt)

  =>BCD^ = ADC^

  Ta lại có AB//CD (gt):

  => ABC^ = BCD^ (2 góc sole trong)

       BAD^ = ADC^ (2 góc sole trong)

       BCD^ = ADC^ (cmt)

  => ABC^ = BAD^

  Ta có ME//BC (gt):

  => MEA^ = ABC^ (2 góc sole trong)

  Mà ABC^ = BAD^ (cmt)

  => MEA^ = BAD^

Mặt khác: MAE^ = BAD^ ( 2 góc đối đỉnh)

  => MEA^ = MAE^

  => Tam giác MAE cân tại M.

15 tháng 6 2019

MIK xin lỗi, mik đánh sai đề bài, sửa lại như sau:

a) Tam giác MAE cân

b) AF = DE

20 tháng 12 2019

Bạn tự kẻ hình nhé.

a)

Kẻ BK vuông góc với BD (K thuộc DC).

Vì AC vuông góc với BD , BD vuông góc với BK nên AC // BK.

Xét tứ giác ABKC có: AB// CK (vì AB//CD) ; AC//BK.

=> Tứ giác ABKC là hình bình hành.   (1)

=> AB = CK.

=> CK = 5 (cm).

Ta có: DC + CK = DK

=>      DK = 10 + 5 = 15 (cm)

Từ (1) => AC = BK => BK = 12(cm)

Xét tam giác BDK vuông tại B có: 

           BD2 + BK2 = DK2

           BD2 + 122  = 152

           BD2 + 144 = 225

          BD2            = 81

 =>     BD = 9 (cm)     (vì BC>0)

Vậy BD = 9cm

b)

Gọi O là giao của BD và AC

Ta có:  SABCD = SABD + SBCD

            SABCD = 1/2  x OA x BD + 1/2 x OC x BD

            SABCD = 1/2 x BD x ( OA + OC)             

            SABCD  = 1/2 x  BD x AC

            SABCD = 1/2 x 9 x 12 = 54 (cm2)

Vậy SABCD = 54 cm2.

           

30 tháng 12 2015

tick đi, t cho mượn vở

 

13 tháng 2 2022

AH, BE cùng vuông góc d nên // nhau
AB//HE (AB//d đề cho)
=> ABEH là hình chữ nhật (2 cặp cạnh đối diện song song)
=> Diện tích ABEH = AB x BE (1)
Gọi M là giao điểm d và AD
gọi N là điểm thuộc d sao cho đối xứng với M qua I => IM = IN
Lại có IC = ID (I là trung điểm CD)
=> CNDM là hình bình hành => CN//MD hay CN//AD
Mà BC//AD (hình thang)
Nên B,C,N thẳng hàng
Chứng minh tam giác ICN = IDM (cạnh-góc-cạnh, 2 cặp cạnh bằng nhau chứng minh trên, góc đối đỉnh bằng nhau)
=> S hình thang ABCD = S hình bình hành ABNM (ABNM là hbh có 2 cặp cạnh //) (2)
BE vuông góc MN (BE vuông góc d) => S ABNM = AB x BE (3)
Từ (1) (2) (3)=> S ABCD = S ABEH

25 tháng 8 2017

2 câu trả lời ở đâu vậy bạn??? :V 

( có cc a giải cho nhé 
                     Thân   )

22 tháng 11 2022

a) Ta có: AB//CD(gt)

mà E∈AB và F∈CD

nên AE//DF và EB//FC

Xét tứ giác AEFD có AE//DF(cmt)

nên AEFD là hình thang có hai đáy là AE và DF(Định nghĩa hình thang)

Hình thang AEFD(AE//DF) có 

O là trung điểm của EF(gt)

OM//AE//DF(MN//AB//DC, E∈AB, O∈MN, F∈DC)

Do đó: M là trung điểm của AD(Định lí 3 về đường trung bình của hình thang)

Xét tứ giác BEFC có BE//FC(cmt)

nên BEFC là hình thang có hai đáy là BE và FC(Định nghĩa hình thang)

Hình thang BEFC(BE//FC) có 

O là trung điểm của EF(gt)

ON//EB//FC(MN//AB//DC, E∈AB, O∈MN, F∈CD)

Do đó: N là trung điểm của BC(Định lí 3 về đường trung bình của hình thang)

Xét ΔABD có 

M là trung điểm của AD(cmt)

E là trung điểm của AB(gt)

Do đó: ME là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒ME//BD và ME=BD2ME=BD2(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔBDC có 

N là trung điểm của BC(cmt)

F là trung điểm của CD(gt)

Do đó: NF là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

⇒NF//BD và NF=BD2NF=BD2(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ME//NF và ME=NF

Xét tứ giác EMFN có ME//NF(cmt) và ME=NF(cmt)

nên EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét ΔBAC có 

E là trung điểm của AB(gt)

N là trung điểm của BC(cmt)

Do đó: EN là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)

⇒EN//AC và EN=AC2EN=AC2(Định lí 2 về đường trung bình của tam giác)

Hình bình hành EMFN trở thành hình thoi khi EM=EN

mà EM=BD2EM=BD2(cmt) và EN=AC2EN=AC2(cmt)

nên BD=AC

Vậy: Khi hình thang ABCD có thêm điều kiện BD=AC thì EMFN là hình thoi