tim x thoa man
x-1\2006+x-10\1997+x-19\1988=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> (x-1/2006 - 1)+(x-10/1997 - 1)+(x-19/1988 - 1) = 0
<=> x-2007/2006 + x-2007/1997 + x-2007/1988 = 0
<=> (x-2007).(1/2006+1/1997+1/1988) = 0
<=> x-2007=0 ( vì 1/2006+1/1997+1/1988 > 0 )
<=> x=2007
Vậy x=2007
k mk nha
\(\frac{x-1}{2006}+\frac{x-10}{1997}+\frac{x-19}{1998}=3\)
\(\Leftrightarrow\left(\frac{x-1}{2006}-1\right)+\left(\frac{x-10}{1997}-1\right)+\left(\frac{x-19}{1998}-1\right)=0\)
\(\Leftrightarrow\frac{x-2007}{2006}+\frac{x-2007}{1997}+\frac{x-2007}{1998}=0\)
\(\Leftrightarrow\left(x-2007\right)\left(\frac{1}{2006}+\frac{1}{1997}+\frac{1}{1988}\right)=0\)
Dễ thấy cái đằng sau luôn > 0 nên x-2007=0 <=> x=2007
\(\frac{x-1}{2006}+\frac{x-10}{1997}+\frac{x-19}{1988}=3\)
\(\Leftrightarrow\frac{x-2007}{2006}+\frac{x-2007}{1997}+\frac{x-2007}{1988}=0\)
\(\Leftrightarrow x=2007\)
✰ ღ๖ۣۜDαɾƙ ๖ۣۜBαηɠ ๖ۣۜSĭℓεηтღ✰
lắm tắt thế này đi thi ko đc điểm đâu nhóc =))
Đặt \(\frac{x-1}{2006}+\frac{x-10}{1997}+\frac{x-19}{1988}\left(1\right)\)
\(\left(1\right)\Leftrightarrow\frac{x-2007}{2006}=\frac{x-2007}{1997}=\frac{x-2007}{1998}=0\)
\(\Rightarrow x=2007\)
Sửa đề :
\(\dfrac{x+1}{2006}+\dfrac{x+10}{1997}+\dfrac{x+19}{1988}=-3\)
\(\Leftrightarrow\left(\dfrac{x+1}{2006}+1\right)+\left(\dfrac{x+10}{1997}+1\right)+\left(\dfrac{x+19}{1988}+1\right)=0\)
\(\Leftrightarrow\dfrac{x+2007}{2006}+\dfrac{x+2007}{1997}+\dfrac{x+2007}{1988}=0\)
\(\Leftrightarrow\left(x+1007\right)\left(\dfrac{1}{2006}+\dfrac{1}{1997}+\dfrac{1}{1988}\right)=0\)
Mà \(\dfrac{1}{2006}+\dfrac{1}{1997}+\dfrac{1}{1988}\ne0\)
\(\Leftrightarrow x+2007=0\)
\(\Leftrightarrow x=-2007\)
Vậy..
đề sai bạn ơi phải là x-1 / 2016 chứ CÁCH GIẢI
ta có x-1/2006 + x-10/1997 + x-19/1988=3 <=> x-1 / 2006 - 1 + x - 10 / 1997 -1 + x-19/1988 - 1 = 0 <=> x-2007 / 2006 + x-2007 / 1997 + x-2007 / 1988 = 0 <=> (x-2007)(1/2006 + 1/1997 + 1/1988) = 0
Do 1/2006 + 1/1997 + 1/1988 khác 0 nên x-2007 = 0 => x = 2007
Vậy x = 2007
\(\dfrac{x-1}{2006}+\dfrac{x-10}{1997}+\dfrac{x-19}{1988}=3\)
\(\Leftrightarrow\left(\dfrac{x-1}{2006}-1\right)+\left(\dfrac{x-10}{1997}-1\right)+\left(\dfrac{x-19}{1988}-1\right)=0\)
=>x-2007=0
=>x=2007
\(\frac{x-1}{2016}+\frac{x-10}{1997}+\frac{x-19}{1988}=3\)
\(pt\Leftrightarrow\frac{x-1}{2016}-1+\frac{x-10}{1997}-1+\frac{x-19}{1988}-1=0\)
\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{1997}+\frac{x-2017}{1988}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{1997}+\frac{1}{1988}\right)=0\)
Dễ thấy: \(\frac{1}{2016}+\frac{1}{1997}+\frac{1}{1988}\ne0\)
\(\Rightarrow x-2017=0\Rightarrow x=2017\)