Giúp mình bài 6 nhé : ( ảnh ở phần bình luận )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua N, kẻ tia Nz//Mx
Nz//Mx
=>\(\widehat{zNM}+\widehat{M}=180^0\)(hai góc trong cùng phía)
=>\(\widehat{zNM}=60^0\)
\(\widehat{zNM}+\widehat{zNP}=\widehat{MNP}\)
=>\(\widehat{zNP}=80^0-60^0=20^0\)
\(\widehat{zNP}=\widehat{P}\)
mà hai góc này ở vị trí so le trong
nên Nz//Py
=>Mx//Py
Qua O, kẻ tia Oz//Aa
Oz//Aa
Aa//BC
Do đó: Oz//BC
Oz//Aa
=>\(\widehat{zOA}=\widehat{OAa}\)(hai góc so le trong)
=>\(\widehat{zOA}=30^0\)
\(\widehat{zOA}+\widehat{zOB}=\widehat{AOB}=90^0\)
=>\(\widehat{zOB}=90^0-30^0=60^0\)
Oz//BC
=>\(\widehat{zOB}=\widehat{OBC}\)(hai góc so le trong)
=>\(x=60^0\)
\(M=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)
=>\(2M=1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)
=>\(2M-M=1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^{100}}\)
=>\(M=1-\dfrac{1}{2^{100}}< 1\)
a) ∠CEz + ∠zEy' = 180⁰ (kề bù)
⇒ ∠CEz = 180⁰ - ∠zEy'
= 180⁰ - 120⁰
= 60⁰
⇒ ∠CEz = ∠xDz = 60⁰
Mà ∠CEz và ∠xDz là hai góc đồng vị
⇒ xx' // yy'
b) Do HC ⊥ xx' (gt)
xx' // yy' (cmt)
⇒ HC ⊥ yy'
c) Do HC ⊥ yy' (cmt)
⇒ ∠HCy = 90⁰
⇒ ∠BCy = ∠HCy - ∠BCH
= 90⁰ - 40⁰
= 50⁰
c) Vẽ tia Bt // xx'//yy'
⇒ ∠CBt = ∠BCy = 50⁰ (so le trong)
⇒ ∠ABt = ∠ABC - ∠CBt
= 90⁰ - 50⁰
= 40⁰
Do Bt // xx'
⇒ ∠xAB = ∠ABt = 40⁰ (so le trong)
Ta có:
∠BAx' + ∠xAB = 180⁰ (kề bù)
⇒ ∠BAx' = 180⁰ - ∠xAB
= 180⁰ - 40⁰
= 140⁰
e) Do AB cắt tia Bt tại B
Mà Bt // yy'
⇒ AB cắt yy'
Bài 7:
a:
Ta có: ΔABC đều
=>AB=AC=BC và \(\widehat{BAC}=\widehat{ABC}=\widehat{ACB}=60^0\)
Xét ΔABC có \(\widehat{ACE}\) là góc ngoài tại đỉnh C
nên \(\widehat{ACE}=\widehat{CAB}+\widehat{CBA}=120^0\)
Xét ΔACE có \(\widehat{ACE}>90^0\)
nên AE là cạnh lớn nhất trong ΔACE
=>AE>AC
=>AE>AB
b: Xét ΔCAE có CA=CE(=BC)
nên ΔCAE cân tại C
=>\(\widehat{CAE}=\dfrac{180^0-120^0}{2}=30^0\)
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
=>\(\widehat{HAC}=\dfrac{\widehat{BAC}}{2}=30^0\)
=>\(\widehat{HAC}=\widehat{CAE}\)
=>AC là phân giác của góc HAE
bài 9:
a: ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH\(\perp\)BC
b: Xét ΔAHM vuông tại H có AM là cạnh huyền
nên AM là cạnh lớn nhất trong ΔAHM
=>AM>AH
Xét ΔAHM có \(\widehat{AMB}\) là góc ngoài tại đỉnh M
nên \(\widehat{AMB}=\widehat{AHM}+\widehat{HAM}=90^0+\widehat{HAM}\)
=>\(\widehat{AMB}>90^0\)
Xét ΔAMB có \(\widehat{AMB}>90^0\)
nên AB là cạnh lớn nhất trong ΔAMB
=>AB>AM
=>AB>AM>AH
=>AC>AM>AH
Đặt tên các điểm, các tên đường thẳng như trên hình vẽ.
Qua O, kẻ tia Oz//Bb(Oz và Bb là hai tia nằm ở hai phía khác nhau)
Oz//Bb
=>\(\widehat{zOB}=\widehat{bBO}\)(hai góc so le trong)
=>\(\widehat{zOB}=40^0\)
Oz//Bb
Bb//Ac
=>Oz//Ac
=>\(\widehat{zOA}+\widehat{OAc}=180^0\)(hai góc trong cùng phía)
=>\(\widehat{zOA}=180^0-120^0=60^0\)
\(\widehat{BOA}=\widehat{zOB}+\widehat{zOA}=60^0+40^0=100^0\)