tìm GTNN và GTLN của P=\(\frac{x^2+x+1}{x^2+2x+1}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Kết luận: GTNN của P là 3/4; P không có GTLN.
Giải: P là một giá trị của hàm số đã cho khi và chỉ khi tồn tại x để \(P=\frac{x^2+x+1}{x^2+2x+1}\) (1), tức là phương trình (1) ẩn x phải có nghiệm.
Ta có \(\left(1\right)\Leftrightarrow P\left(x^2+2x+1\right)=x^2+x+1\)\(\Leftrightarrow\left(P-1\right)x^2+\left(2P-1\right)x+\left(P-1\right)=0\).
Nếu \(P=1\) thì (1) trở thành \(x=0\), phương trình có nghiệm x = 0.
Nếu \(P\ne1\) thì phương trình sẽ có nghiệm khi và chỉ khi
\(\Delta=\left(2P-1\right)^2-4\left(P-1\right)^2=4P-3\ge0\Leftrightarrow P\ge\frac{3}{4}\)
Vậy tập giá trị của P là \(\frac{3}{4}\le P< +\infty\). Do đó P không có GTLN và P có GTNN = \(\frac{3}{4}\)
\(P=\frac{x^2+x+1}{x^2+2x+1}=\frac{\frac{3}{4}\left(x^2+2x+1\right)+\frac{\left(x^2-2x+1\right)}{4}}{x^2+2x+1}\)
\(=\frac{3}{4}+\frac{\left(x-1\right)^2}{4\left(x+1\right)^2}\ge\frac{3}{4}\)
Dấu = xảy ra khi \(x=1\)