Cho dãy số (Un): U1=1 , U2=6, Un+2=6un+1-4un
a. Viết quy trình ấn phím liên tục tìm Un
b.Tính U12 và tổng 12 số hạng đầu tiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhập vào màn hình :
X = X + 1 : A = X / ( X + 1 )^2 : B = A + B
CALC ? X = 0 ; B = 0
= = = = ....
"Shift" -> "Log" -> "Alpha" -> ")" -> "kí hiệu phân số" -> "(" -> "Alpha" -> ")" -> "+" -> "1" -> ")" -> "x2" -> nhấn nút phải 2 lần -> "1" -> nhấn nút phải -> "30"
Kết quả ra 2,414054495
Giải
Viết liên tiếp các số từ trái sang phải theo cách sau : Số đầu tiên là 1, số
thứ hai là 2, số thứ ba là chữ số tận cùng của tổng số thứ nhất và số thứ hai, số
thứ tư là chữ số tận cùng của tổng số thứ hai và số thứ ba. Cứ tiếp tục như thế
ta được dãy các số như sau : 1235831459437......
Trong dãy trên có xuất hiện số 2005 hay không ?
Ta thấy \(\frac{1}{2}=\frac{1}{1\times2};\frac{1}{6}=\frac{1}{2\times3}...\)
Do đó quy luật của dãy số là: tử là chữ số 1, mẫu là tích của 2 số tự nhiên liên tiếp bắt đầu từ số 1
a, Số hạng thứ 10 của dãy số trên là:\(\frac{1}{10\times11}\)
Tổng 10 số hạng đầu tiên của dãy là\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{10\times11}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}=1-\frac{1}{11}=\frac{10}{11}\)
b,Số \(\frac{1}{10200}\)không phải là một số hạng của dãy vì mẫu không phải là tích của 2 số tự nhiên liên tiếp.
a.
\(u_5=18\Rightarrow u_1+4d=18\) (1)
\(4S_n=S_{2n}\Rightarrow\dfrac{4n\left(2u_1+\left(n-1\right)d\right)}{2}=\dfrac{2n\left(2u_1+\left(2n-1\right)d\right)}{2}\)
\(\Rightarrow4u_1+2\left(n-1\right)d=2u_1+\left(2n-1\right)d\)
\(\Rightarrow2u_1-d=0\Rightarrow d=2u_1\) (2)
Thế (2) vào (1):
\(\Rightarrow9u_1=18\Rightarrow u_1=2\Rightarrow d=4\)
b.
Do a;b;c là 3 số hạng liên tiếp của 1 CSC công sai 2 nên: \(\left\{{}\begin{matrix}b=a+2\\c=a+4\end{matrix}\right.\)
Khi tăng số thứ nhất thêm 1, số thứ 2 thêm 1 và số thứ 3 thêm 3 được 1 cấp số nhân nên:
\(\left(a+1\right)\left(c+3\right)=\left(b+1\right)^2\)
\(\Rightarrow\left(a+1\right)\left(a+7\right)=\left(a+3\right)^2\)
\(\Rightarrow a^2+8a+7=a^2+6a+9\)
\(\Rightarrow a=1\Rightarrow b=3\Rightarrow c=5\)