cho a,b là các stn thỏa mãn điều kiện a:21 dư 3 và b :17 dư 3.hỏi 2a+3b có phải là bội của 17 ko
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a$ chia 3 dư 1 nên $a$ có dạng $a=3k+1$ với $k\in\mathbb{N}$
$b$ chia $3$ dư 2 nên $b$ có dạng $b=3m+1$ với $m\in\mathbb{N}$
$\Rightarrow a+b=3k+1+3m+2=3k+3m+3=3(k+m+1)\vdots 3$
Có bổ đề sau: \(a^2=pq\) với \(a,p,q\in Z^+\) và \(\left(p,q\right)=1\) thì p,q là hai số chính phương
\(2a^2-2b^2+a-b=b^2\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)(*)
Gọi d là UWCLN của a-b và 2a+2b+1 ta có từ (*) b chia hết d.
a-b chia hết cho d nên 2a-2b chia hết cho d . Vậy 2a+2b+1-(2a-2b) chia hết d
nên 4b+1 chia hết d mà b chia hết cho d nên 1 chia hết d. Vậy hai số a-b và 2a+2b+1 nguyên tố cùng nhau
Áp dụng bổ đề có đpcm
Lời giải:
Cho $a=3; b=3$ đều thỏa mãn điều kiện đề bài. Khi đó:
$2a+3b=2.3+3.3=15$ không phải bội của 17.