Tìm số nguyên a sao cho -3/4<a/12<-5/9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Để A là số nguyên tố thì \(\dfrac{4}{x-3}\) phải là số nguyên tố có một nghiệm bằng 1 và bằng chính nó
\(x-3\inƯ_{\left(4\right)}=\left\{\pm1;\pm2;\pm4\right\}\). Mặt khác ta thấy chỉ có 2 là số nguyên tố \(\Rightarrow x-3=2\Leftrightarrow x=5\)
Giải:
a) Để \(A=\dfrac{4}{x-3}\) là số chính phương thì A là Ư chính phương của 4
\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{1;4\right\}\)
Ta có bảng giá trị:
x-3 | 1 | 4 |
x | 4 | 7 |
Vậy \(x\in\left\{4;7\right\}\)
b) Để \(A=\dfrac{4}{x-3}\) là số nguyên tố thì \(4⋮\left(x-3\right)\)
\(4⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta thấy:
Vì chỉ có mỗi 2 là số nguyên tố nên ta có:
x-3=2
x=5
a) \(\dfrac{7}{4}< \dfrac{a}{8}< 3\\ =>\dfrac{7}{4}.8< a< 3.8\\ =>14< a< 24\\ =>a\in\left\{15;16;17;...;23\right\}\)
b) \(\dfrac{2}{3}< \dfrac{a-1}{6}< \dfrac{8}{9}\\ =>\dfrac{2}{3}.6< a-1< \dfrac{8}{9}.6\\ =>4< a-1< \dfrac{16}{3}\\ =>4+1< a< \dfrac{16}{3}+1\\ =>5< a< \dfrac{19}{3}\\ =>a=6\)
b) \(\dfrac{2}{3}< a-\dfrac{1}{6}< \dfrac{8}{9}\\ =>\dfrac{2}{3}+\dfrac{1}{6}< a< \dfrac{8}{9}+\dfrac{1}{6}\\ =>\dfrac{5}{6}< a< \dfrac{19}{18}\\ =>a=1\)
c) \(\dfrac{12}{9}< \dfrac{4}{a}< \dfrac{8}{3}\\ =>\dfrac{24}{18}< \dfrac{24}{6a}< \dfrac{24}{9}\\ =>9< 6a< 18\\ =>\dfrac{9}{6}< a< \dfrac{18}{6}\\ =>1,5< a< 3\\ =>a=2\)
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
\(\dfrac{-3}{4}< \dfrac{a}{12}< \dfrac{-5}{9}\)
\(\Rightarrow\dfrac{-27}{36}< \dfrac{3a}{36}< \dfrac{-20}{36}\)
\(\Rightarrow-27< 3a< -20\)
\(\Rightarrow a=\left\{-8;-7\right\}\)