Giúp mình với Cho tam giác ABC có G là trọng tâm , I là trung điểm của BC . Chứng minh rằng a) vectơIB+vectơIC=vectơ0 b)vectơGA+vectơGB+vectơGC=vectơ0
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NM
Nguyễn Minh Quang
Giáo viên
4 tháng 4 2021
Gọi G là trọng tâm của tam giác ABC\(\frac{\Rightarrow AG}{AM}=\frac{2}{3}\)
Ta có \(\hept{\begin{cases}BM=CM\\\widehat{BHM}=\widehat{CKM}=90^0\\\widehat{BMH}=\widehat{CMK}\end{cases}\Rightarrow\Delta BHM=\Delta CKM\left(\text{ cạnh huyền - góc nhọn}\right)}\)
Vì vậy \(HM=KM\) nên AM là trung tuyến của \(\Delta AHK\) mà \(\frac{AG}{AM}=\frac{2}{3}\Rightarrow G\) là trọng tâm tam giác AHK
2 tháng 3 2023
a: Xét ΔABC có
BN là trung tuyến
G là trọng tâm
=>BG=2/3BN
=>BG=2GN
b: Vì G là trọng tâm của ΔABC
nên M là trung điểm của CB
a) \(\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{IB}-\overrightarrow{IB}=\overrightarrow{0}\)
b) \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\)
\(=2\overrightarrow{GE}+\overrightarrow{GC}=2\overrightarrow{GE}-2\overrightarrow{GE}=\overrightarrow{0}\)