K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

y=14

x=6

TÍCH CHO MÌNH NHA BẠN

15 tháng 7 2015

a) Áp dụng t/ của dãy tỉ số = nhau, ta có: 

x/5=y/3=z/4=x-z/5-4=7/1=7

Khi đó x/5=7=>x=35

          y/3=7=>y=21

          z/4=7=>z=28

Vậy _________

b) Mình sửa lại đề cho bạn nhé, bạn bị sai 1 chỗ: tim x,y thuộc z biết x/3=y/4=z/5 và 2x+3y+5z=86

Ta có: x/3=y/4=z/5 <=>2x/6=3y/12=5z/25

Áp dụng t/c của dãy tỉ số = nhau, ta có:

x/3=y/4=z/5=2x/6=3y/12=5z/25= (2x+3y+5z)/6+12+25= 86/43=2

Khi đó: x/3=2=>x=6

           y/4=2=>y=8

           z/5=2=>z= 10

Vậy _________

a: \(\Leftrightarrow\dfrac{x}{-4}=\dfrac{21}{y}=\dfrac{z}{-80}=\dfrac{3}{4}\)

=>x=-3; y=28; z=-60

b: 5/12=x/-72

=>x=-72*5/12=-6*5=-30

c: =>x+3=-5

=>x=-8

\(\frac{3+x}{7+y}=\frac{3}{7};x+y=20\)

\(\Leftrightarrow21+7x=21+3y\Leftrightarrow7x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{7}\)

Áp dụng t/c dãy tỉ số ''='' nhau ta có 

\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{2}{10}=\frac{1}{5}\)

\(\Leftrightarrow\frac{x}{3}=\frac{1}{5}\Leftrightarrow5x=3\Leftrightarrow x=\frac{3}{5}\)

\(\Leftrightarrow\frac{y}{7}=\frac{1}{5}\Leftrightarrow5y=7\Leftrightarrow y=\frac{7}{5}\)

a) \(\frac{-2}{x}=\frac{y}{5}\Leftrightarrow xy=-10\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=10\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-10\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-5\\y=2\end{matrix}\right.\end{matrix}\right.\)

Vậy : ...

b) \(\frac{3+x}{7+y}=\frac{3}{7}\)

\(\Leftrightarrow21+7x=21+3y\)

\(\Leftrightarrow7x=3y\)

\(\Leftrightarrow\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\) ( Tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=14\end{matrix}\right.\)

Vậy : ....

c) \(3x=5y\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{16}{8}=2\) ( Tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\left\{{}\begin{matrix}x=10\\y=6\end{matrix}\right.\)

Vậy : ...