b1 : cho abc(ab+bc+ca)khác0 giải phương trình ẩn x (x-b-c)/a+(x-c-a)/b+(x-a-c)/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho abc(a+b+c) khác 0. Giải phương trình ẩn x:
(x-a)/bc+(x-b)/ac+(x-c)/ab=1/2(1/a+1/b+1/c)
.
Lời giải:
\(\frac{x-b-c}{a}+\frac{x-a-c}{b}+\frac{x-a-b}{c}=3\)
\(\Leftrightarrow \frac{x-b-c}{a}-1+\frac{x-a-c}{b}-1+\frac{x-a-b}{c}-1=0\)
\(\Leftrightarrow \frac{x-b-c-a}{a}+\frac{x-a-c-b}{b}+\frac{x-a-b-c}{c}=0\)
\(\Leftrightarrow (x-a-b-c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0(1)\)
Vì $abc(ab+bc+ac)\neq 0\Rightarrow \frac{ab+bc+ac}{abc}\neq 0$
$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\neq 0(2)$
Từ $(1);(2)\Rightarrow x-a-b-c=0\Rightarrow x=a+b+c$
\(\begin{array}{l} \dfrac{{x - b - c}}{a} + \dfrac{{x - c - a}}{b} + \dfrac{{x - a - b}}{c} = 3\\ \Leftrightarrow \left( {\dfrac{{x - b - c}}{a} - 1} \right) + \left( {\dfrac{{x - c - a}}{b} - 1} \right) + \left( {\dfrac{{x - a - b}}{c} - 1} \right) = 3 - 1 - 1 - 1\\ \Leftrightarrow \dfrac{{x - a - b - c}}{a} + \dfrac{{x - a - b - c}}{b} + \dfrac{{x - a - b - c}}{c} = 0\\ \Leftrightarrow \left( {x - a - b - c} \right)\left( {\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}} \right) = 0\\ \Leftrightarrow x - a - b - c = 0\\ \Leftrightarrow x = a + b + c \end{array}\\ \boxed{NTT}\)
gợi ý nha (mik lm còn j là hok nx ) (x+a)(x+b)(x+c)=x2+(a+b+c)x2+(ab+bc+ac)x+abc
Muốn chứng minh được ta phải chứng minh vế trái
(x2+bx+ax+ab)(x+c)=x3+ax2+bx2+cx2+abx+bcx+acx+abc
x3+ax2+bx2+cx2+abx+bcx+acx+abc=x3+ax2+bx2+cx2+abx+bcx+acx+abc(1)
Vì hai biểu thức trên (1) giông nhau
Do đó (x+a)(x+b)(x+c)=x2+(a+b+c)x2+(ab+bc+ac)x+abc