K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2023

Chỉnh đề:

Ta có:

\(A=2+2^2+2^3+2^4+...2^{12}\)

\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{10}+2^{11}+2^{12}\right)\)

\(A=14+2^3.\left(2+2^2+2^3\right)+...+2^9.\left(2+2^2+2^3\right)\)

\(A=14+2^3.14+...+2^9.14\)

\(A=14.\left(1+2^3+...+2^9\right)\)

Vì \(14⋮7\) nên \(14.\left(1+2^3+...2^9\right)⋮7\)

Vậy \(A⋮7\)

 

10 tháng 10 2023

giỏi dữ ta

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

21 tháng 10 2021

giúp tớ với

17 tháng 12 2021

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

8 tháng 3 2018

A = (2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+(2^10+2^11+2^12)

   = 2.(1+2+2^2)+2^4.(1+2+2^2)+2^7.(1+2+2^2)+2^10.(1+2+2^2)

   = 2.7+2^4.7+2^7.7+2^10.7

   = 7.(2+2^4+2^7+2^10) chia hết cho 7

Tk mk nha

8 tháng 3 2018

A = 2 + 22 + 23 + 24 + . . . + 212

A = ( 2 + 22 + 2) + . . . + ( 210 + 211 + 212 )

A = 2 . ( 1 + 2 + 22 ) + . . . + 210 . ( 1 + 2 + 22 )

A = 2 . 7 + 24 . 7 + . . . + 210 . 7

A = 7 . ( 2 + 2+ . . . + 510 ) \(⋮\)7

=> A \(⋮\)7

21 tháng 10 2023

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

14 tháng 10 2017

Lẹ đi mọi người mik đang cần gấp!

14 tháng 10 2017

1/ ta có : 

11.12.13+ 114.115.116+ 1117.1118.1119= 11.3.4.13+ 3.38.115.116+ 1117.1118.3.373

= 3(11.4.13+ 38.115.116+ 1117.1118.373 ) chia hết cho 3 => đpcm

2/ a)(mik nghĩ là bn nhầm, nếu 7^2 +...+ 7^60 chia hết cho 8 thì chắc chắn là sai hoàn toàn, nên mik sửa đề) ta có :

S = \(7+7^2+7^3+7^4+7^5+...+7^{59}+7^{60}\) 

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)+...+\left(7^{59}.7^{60}\right)\)

\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{59}\left(1+7\right)\)

\(=7.8+7^3.8+...+7^{59}.8\)

\(=8\left(7+7^3+...+7^{59}\right)⋮8\)(đpcm)

b) \(A=a+a^2+a^3+a^4+...+a^{23}+a^{24}\)

\(=\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{23}+a^{24}\right)\)

\(=a\left(1+a\right)+a^3\left(1+a\right)+...+a^{23}\left(1+a\right)\)

\(=\left(1+a\right)\left(a+a^3+...+a^{23}\right)⋮\left(a+1\right)\)(đpcm)

Nhớ kb với mik nha!

22 tháng 7 2021

undefined

undefined

 

22 tháng 7 2021

thanks