tìm x,y
a, 2^x+1 . 3^y =12^x b, 2^x =4^y-1 và 27^y =3^x+8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x+1.3y=123
<=>2x+1.3y=(22)3.33
<=> 2x+1=26 và 3y=33
<=>x+1=6 và y=3
<=>x=5 và y=3
b) 10x : 5y=20y
<=>10x=20y.5y=100y=(102)y
<=>x=2y (Nhiều số lắm chèn)
c) 2x=4y-1
<=>2x=2y-2
<=>x=y-2
Mặt khác: 27y=3x+8
<=> 33y=3x+8
<=>3y=x+8
<=>3y=(y-2)+8
<=>2y=6
<=>y=3
=>x=y-2=3-2=1
\(\text{a)}\)\(2^{x+1}.3^y=2^{2x}.3^x\Leftrightarrow\frac{2^{2x}}{2^{x+1}}=\frac{3^y}{3^x}\)
\(\Leftrightarrow2^{x-1}=3^{y-x}\)
\(\Leftrightarrow x-1=y-x=0\)
\(\Leftrightarrow x=y=1\)
a)5x+5x+2=650
\(\Rightarrow5^x\left(1+5^2\right)=650\)
\(\Rightarrow5^x\cdot26=650\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
b)\(3^{x-1}+5\cdot3^{x-1}=162\)
\(\Rightarrow3^{x-1}\cdot\left(1+5\right)=162\)
\(\Rightarrow3^{x-1}\cdot6=162\)
\(\Rightarrow3^{x-1}=27\)
\(\Rightarrow3^{x-1}=3^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
a) Từ đề bài suy ra
2^x+1.3^y=(3.2^2)^x
2^x+1.3^y=3^x.(2^2)^x.Vì cách phân tích là duy nhất.
2^x+1=2^2x và 3^y=3^x
x+1=2x;y=x
x=y=1
b) 10^x:5^y=20^y
10^x =20^y.5^y
10^x = (20.5)^y
10^x = 100^y
10^x = 10^2y
x = 2y
Vậy x= 2y
\(2^{x+1}.3^y=12^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.4^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.2^{2x}\)
\(\Rightarrow\orbr{\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+1=2x\\y=x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\text{Vì y = x}\Rightarrow y=1\end{cases}}\)
Lời giải:
a. $2^{x+1}.3^y=12^x=(2^2.3)^x=2^{2x}.3^x$
$\Rightarrow x+1=2x; y=x$
$\Rightarrow x=1; y=x\Rightarrow x=y=1$
b.
$2^x=4^{y-1}$
$2^x=(2^2)^{y-1}=2^{2(y-1)}$
$\Rightarrow x=2(y-1)(1)$
Lại có:
$27^y=3^{x+8}$
$(3^3)^y=3^{x+8}$
$3^{3y}=3^{x+8}\Rightarrow 3y=x+8(2)$
Từ $(1); (2)\Rightarrow 3y=2(y-1)+8$
$\Leftrightarrow 3y=2y+6$
$\Leftrightarrow y=6$
$x=2(y-1)=2(6-1)=10$