Chứng tỏ rằng: x-x²-2<0 với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ
\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)
\(=1-2+1=0\)
vậy ......
TA CÓ
\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)
vậy..............
Thay \(x=\frac{1}{2}\)vào P (x) ta có:
\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)
\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)
\(P\left(\frac{1}{2}\right)=1-2+1\)
\(P\left(\frac{1}{2}\right)=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)
`@` `\text {Ans}`
`\downarrow`
`P(x) = x^2 + x + 1 =0`
Vì `x^2 \ge 0 AA x`
`=> x^2 + x + 1 \ge 1 AA x`
Mà `1 \ne 0`
`=>` Đa thức `P(x)` vô nghiệm.
Hoặc bạn có thể sử dụng cách này (dễ hình dung hơn)
`P(x) = x^2 + x + 1 =0`
`=> x^2 + 2*1/2x + 1/4 + 3/4 =0`
`=> x(x+1/2) + 1/2(x+1/2) + 3/4=0`
`=> (x+1/2)(x+1/2)+3/4=0`
`=> (x+1/2)^2 + 3/4 = 0`
Mà `(x+1/2)^2 \ge 3/4 > 0 AA x`
`=>` Đa thức P(x) vô nghiệm.
\(P\left(x\right)=x^2+x+1=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
=> vô nghiệm
ta có f(x)=x2+(x+1)2
Do x2\(\ge0\),\(\left(x+1\right)^2\ge0\)
\(\Rightarrow x^2+\left(x+1\right)^2>0\)
(vì không thể đồng thời x=x+1=0 được vì\(x\ne x+1\))
=> đa thức f(x) vô nghiệm (đpcm)
tk mk nha bn
***** Chúc bạn học giỏi*****
Ta có: x^4 lớn hơn hoặc bằng 0
2*x^2 lớn hơn hoặc bằng 0
=> P(x) = x^4 + 2*x^2 + 1 > 0
=> Đa thức P(x) không có nghiệm
x-x2-2
=-(x2-x+2)
=-(x-1/2)2-7/4
Vì -(x-1/2)2 < hoặc = 0 Với mọi x
=> -(x-1/2)2-7/4 < hoặc bằng -7/4
Kết luận