Chứng minh rằng với mọi STN khác 0 , có số lượng các ước tự nhiên là một số lẻ thì STN đó là một số chính phương.
Giải giúp mình nha ! thank you
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ ta có số nguyên tố có số lượng ước là 2,đó 1 số chẵn,vậy số đó không thể là số nguyên tố=> số đó là hợp sỗ
nên ta có thể đặt n = p1^k1.p2^k2...pr^kr (phân tích ra thừa số nguyên tố)
số ước của n là (k1 + 1)(k2 + 1)..(kr + 1)
theo đề bài thì (k1 + 1)(k2 + 1)..(kr + 1) là số lẽ
=> k1,k2,..kr tất cả phải hoàn toàn là số chẵn,bởi vì chỉ cần một ki lẻ thì toàn bộ tích đó là số lẽ
nghĩa là k1 = 2k1',k2 = 2k2',...,kr = 2kr'
suy ra n = [p1^k1'.p2^k2'...prkr']^2 là 1 số chính phương
Gọi số tự nhiên đó là M , phân tích M ra các thừa số nguyên tố, giả sử : M = a x b y c z . . . Số lượng các ước của M là (x+1)(y+1)(z+1)… tích này là 1 số lẻ nên các thừa số đều lẻ suy ra x, y, z,… đều chẵn: x = 2x’; y = 2y’; z = 2z’; … Lúc đó M = a 2 x ' b 2 y ' c 2 z ' . . . = ( a x ' b y ' c z ' ) 2 . Điều này chính tỏ M là một số chính phương.
Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a
*) Nếu a = 1 thì a có duy nhất 1 ước là 1, là số lẻ; a = 1 = 12, là số chính phương, thỏa mãn đề bài
*) Nếu a > 1 => a = xy.zk... (x,z,... là các số nguyên tố; y,k,... là các số tự nhiên khác 0)
=> số ước của a là: (y + 1).(k + 1)... là số lẻ
=> y + 1 là số lẻ; k + 1 là số lẻ; ...
=> y chẵn; k chẵn; ...
=> xy; zk; ... là số chính phương
Mà số chính phương x số chính phương = số chính phương
=> a là số chính phương
=>1 số tự nhiên khác 0 có số lượng ước là 1 số lẻ thì số tự nhiên đó là 1 số chính phương (đpcm)
Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a
+ Nếu a = 1 thì a có duy nhất 1 ước là 1, là số lẻ; a = 1 = 12, là số chính phương, thỏa mãn đề bài
+ Nếu a > 1 => a = xy.zk... (x,z,... là các số nguyên tố; y,k,... là các số tự nhiên khác 0)
=> số ước của a là: (y + 1).(k + 1)... là số lẻ
=> y + 1 là số lẻ; k + 1 là số lẻ; ...
=> y chẵn; k chẵn; ...
=> xy; zk; ... là số chính phương
Mà số chính phương x số chính phương = số chính phương => a là số chính phương
Vậy 1 số tự nhiên khác 0 có số lượng ước là 1 số lẻ thì số tự nhiên đó là 1 số chính phương
Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a
+ Nếu a = 1 thì a có duy nhất 1 ước là 1, là số lẻ; a = 1 = 12, là số chính phương, thỏa mãn đề bài
+ Nếu a > 1 => a = xy.zk... (x,z,... là các số nguyên tố; y,k,... là các số tự nhiên khác 0)
=> số ước của a là: (y + 1).(k + 1)... là số lẻ
=> y + 1 là số lẻ; k + 1 là số lẻ; ...
=> y chẵn; k chẵn; ...
=> xy; zk; ... là số chính phương
Mà số chính phương x số chính phương = số chính phương => a là số chính phương
Chứng tỏ 1 số tự nhiên khác 0 có số lượng ước là 1 số lẻ thì số tự nhiên đó là 1 số chính phương
Gọi số tự nhiên khác 0 bất kì thỏa mãn đề bài là a
+ Nếu a = 1 thì a có duy nhất một ước là 1 , là số lẻ ; a = 1 = 1\(^{^2}\), là số chính phương , thỏa mãn đề bài
+ Nếu a > 1 => x\(^y\) . z\(^{^k}\)... ( x , z ,.. là các số nguyên tố ; y , k ,... là các số tự nhiên khác 0 )
=> Số ước của a là : ( y + 1 ) . ( k + 1 ) ... là số lẻ
=> y + 1 là số lẻ ; k + 1 là số lẻ ; ....
=> y chẵn ; k chẵn ; ....
=> x\(^y\) ; z\(^k\) ; .... là số chính phương
Mà số chính phương x số chính phương = số chính phương => a là số chính phương
Chứng minh một số tự nhiên khác 0 có số lượng ước là một số lẻ thì số tự nhiên đó là một số chính phương
Bài 1:
a) C = 4 + 42 + 43 + 44 + ... + 42015 + 42016
C = (4 + 42 + 43) + (44 + 45 + 46) + ... + (42014 + 42015 + 42016)
C = 4(1 + 4 + 42) + 44 ( 1 + 4 + 42) + ...+ 42014(1 + 4 + 42)
C = 4 . 21 + 44 . 21 + ... + 42014 . 21
C = 21(4 + 44 + ... + 42014) \(⋮\)21
=> C \(⋮\)21
C = 4 + 42 + 43 + 44 + 45 + ... + 42015 + 42016
C = (4 + 42 + 43 + 44 + 45 + 46) + ... + (42011 + 42012 + 42013 + 42014 + 42015 + 42016)
C = 4(1 + 4 + 42 + 43 + 44 + 45) + ... + 42011(1 + 4 + 42 + 43 + 44 + 45)
C = 4 . 1365 + 47 . 1365 + ... + 42011 . 1365
C = 1365(4 + 47 + ... + 42011)
mà 1365 \(⋮\)105
=> C \(⋮\)105
\(\sqrt{2}\)111111111111111