K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2023

a) \(y=\left(m-1\right)x-3\left(1\right)\)

\(A\left(2;1\right)\in\left(1\right)\Leftrightarrow\left(m-1\right).2-3=1\)

\(\Leftrightarrow2m-2-3=1\)

\(\Leftrightarrow2m=6\)

\(\Leftrightarrow m=3\)

\(\Rightarrow y=2x-3\)

b) Để \(\left(1\right)\) đồng biến

\(\Leftrightarrow m-1>0\)

\(\Leftrightarrow m>1\)

c) \(\left(1\right)\cap\left(Ox\right)=\left(2;0\right)\)

\(\Leftrightarrow\left(m-1\right).2-3=0\)

\(\Leftrightarrow2m-5=0\)

\(\Leftrightarrow m=\dfrac{5}{2}\)

d) \(\left(1\right)\cap\left(Oy\right)=\left(0;1\right)\)

\(\Leftrightarrow\left(m-1\right).0-3=1\)

\(\Leftrightarrow0m=4\left(vô.lý\right)\)

Vậy không có giá trị m nào thỏa mãn đề bài

7 tháng 10 2023

\(y=2x-3\)

loading...

a: Thay x=1 và y=4 vào (1), ta được:

\(m\cdot1+1=4\)

=>m+1=4

=>m=3

Thay m=3 vào y=mx+1, ta được:

\(y=3\cdot x+1=3x+1\)

Vì a=3>0

nên hàm số y=3x+1 đồng biến trên R

b: Để đồ thị hàm số (1) song song với (d) thì

\(\left\{{}\begin{matrix}m^2=m\\m+1\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\m\ne0\end{matrix}\right.\)

=>m-1=0

=>m=1

1: \(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2+2x-\left(m+1\right)=x^2+2x-m-1\)

\(\Delta=2^2-4\left(-m-1\right)=4m+8\)

Để f'(x)>=0 với mọi x thì 4m+8<=0 và 1>0

=>m<=-2

=>\(m\in\left\{-10;-9;...;-2\right\}\)

=>Có 9 số

14 tháng 9 2023

\(y=\dfrac{x^2+mx+1}{x+m}=x+\dfrac{1}{x+m}\)

\(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1-\dfrac{1}{\left(2+m\right)^2}=0\\\dfrac{2}{\left(m+2\right)^3}< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m=-3\\m< -2\end{matrix}\right.\)

Chọn a

28 tháng 3 2020

a) Đths y = ax - 4 cắt y = 2x - 1 tại điểm có hoành độ = 2

=> Thay x = 2 vào y = 2x - 1

=> y = 1

=> (1; 1) ∈ y = ax - 4

=> Thay x = 1; y = 1 vào hàm số y = ax - 4

=> a - 4 = 1 => a = 5

b) y = (2m - 3)x + (2m - 1) cắt trục tung tại điểm có tung độ = 46

=> y = (2m - 3)x + (2m - 1) cắt (0 ; 46)

=> Thay x = 0; y = 46 vào hàm số y = (2m - 3)x + (2m - 1)

=> 2m - 1 = 46

=> m = 47/2

24 tháng 12 2021

2: Tọa độ giao điểm của (d1) và (d2) là:

\(\left\{{}\begin{matrix}x+2=4-3x\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)

Thay x=1/2 và y=5/2 vào (d), ta được:

\(\dfrac{1}{2}m-1+2-m=\dfrac{5}{2}\)

=>-1/2m=3/2

hay m=-3

Bài 1: Cho hàm số \(y=x^3+3x^2+mx+m-2\) (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoànhBài 2: Cho hàm số \(y=\dfrac{2x-2}{x+1}\) . Tìm m để đường thẳng d: \(y=2x+m\)  cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB=\(\sqrt{5}\)Bài 3: Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2+2(m-1)x-3\) (m là tham số) có đồ thị là (Cm) . Xác...
Đọc tiếp

Bài 1: Cho hàm số \(y=x^3+3x^2+mx+m-2\) (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành

Bài 2: Cho hàm số \(y=\dfrac{2x-2}{x+1}\) . Tìm m để đường thẳng d: \(y=2x+m\)  cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB=\(\sqrt{5}\)

Bài 3: Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2+2(m-1)x-3\) (m là tham số) có đồ thị là (Cm) . Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về cùng một phía đối với trục tung

Bài 4: Cho hàm số \(y=-x^3+2(m-1)x^2-(m^2-3m+2)x-4\)

(m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung

Bài 5: Cho hàm số \(y=-x^3+3x^2+3(m^2-1)x-3m^2-1\) (1). Tìm m để hàm số (1) có cực đại, cực tiểu, đồng thời các điểm cực đại và cực tiểu cùng với gốc tọa độ O tạo thành một tam giác vuông tại O

 

5
NV
18 tháng 7 2021

1.

Đồ thị hàm bậc 3 có 2 điểm cực trị nằm về 2 phía trục hoành khi và chỉ khi \(f\left(x\right)=0\) có 3 nghiệm phân biệt

\(\Leftrightarrow x^3+3x^2+mx+m-2=0\) có 3 nghiệm pb

\(\Leftrightarrow x^3+3x^2-2+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x-2\right)+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+m-2=0\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 2 nghiệm pb khác -1

\(\Leftrightarrow\left\{{}\begin{matrix}1-2+m-2\ne0\\\Delta'=1-\left(m-2\right)>0\end{matrix}\right.\) 

\(\Leftrightarrow m< 3\)

NV
18 tháng 7 2021

2.

Pt hoành độ giao điểm:

\(\dfrac{2x-2}{x+1}=2x+m\)

\(\Rightarrow2x-2=\left(2x+m\right)\left(x+1\right)\)

\(\Leftrightarrow2x^2+mx+m+2=0\) (1)

d cắt (C) tại 2 điểm pb \(\Rightarrow\) (1) có 2 nghiệm pb

\(\Rightarrow\Delta=m^2-8\left(m+2\right)>0\Rightarrow\left[{}\begin{matrix}m>4+4\sqrt{2}\\m< 4-4\sqrt{2}\end{matrix}\right.\)

Khi đó, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-\dfrac{m}{2}\\x_Ax_B=\dfrac{m+2}{2}\end{matrix}\right.\)

\(y_A=2x_A+m\) ; \(y_B=2x_B+m\)

\(\Rightarrow AB^2=\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2+\left(2x_A-2x_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2=1\)

\(\Leftrightarrow\left(x_A+x_B\right)^2-4x_Ax_B=1\)

\(\Leftrightarrow\left(-\dfrac{m}{2}\right)^2-4\left(\dfrac{m+2}{2}\right)=1\)

\(\Leftrightarrow m^2-8m-20=0\Rightarrow\left[{}\begin{matrix}m=10\\m=-2\end{matrix}\right.\)

a: Thay x=4 và y=1 vào y=(m+1)x-3, ta được:

4(m+1)-3=1

=>4m+4-3=1

=>4m+1=1

hay m=0

b: Để hai đường vuông góc thì 5(m+1)=-1

=>m+1=-1/5

hay m=-6/5

c: Thay x=2 vào y=3x-1, ta được:

\(y=3\cdot2-1=5\)

Thay x=2 và y=5 vào (d), ta được:

2(m+1)-3=5

=>2(m+1)=8

=>m+1=4

hay m=3