Giải phương trình nguyện nguyên: x^15+y^15+z^15=19^2002+7^2003+9^2003
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu A là hai phân số không bằng nhau nha bạn
b: \(-\dfrac{60}{185}=\dfrac{-60:5}{185:5}=\dfrac{-12}{37}\)
c: \(\dfrac{20022002}{20032003}=\dfrac{20022002:10001}{20032003:10001}=\dfrac{2002}{2003}\)
d: \(-\dfrac{3a}{6b}=\dfrac{-a}{2b}=\dfrac{5a}{-10b}\)
a. \(\frac{x-15}{2000}+\frac{x-14}{2001}+\frac{x-13}{2003}=\frac{x-12}{2003}+2\)
\(\rightarrow\frac{x}{2000}-\frac{15}{2000}+\frac{x}{2001}-\frac{14}{2001}+\frac{x}{2003}-\frac{13}{2003}=\frac{x}{2003}-\frac{12}{2003}+2\)
\(\rightarrow x.\left(\frac{1}{2000}+\frac{1}{2001}\right)=\frac{15}{2000}+\frac{14}{2001}+\frac{13}{2003}-\frac{12}{2003}+2\)
\(\rightarrow x=2015,5\)
b. \(\left(x^2-6x+11\right)\left(y^2+2y+4\right)=2+4z-z^2\)
\(\rightarrow\left\{{}\begin{matrix}x^2-6x+11=\left(x-3\right)^2+2\ge2\\y^2+2y+4=\left(y+1\right)^2+3\ge3\\2+4z-z^2=-\left(z-2\right)^2+6\le6\end{matrix}\right.\)
\(\rightarrow\left(x^2-6x+11\right)\left(y^2+2y+4\right)\ge6\)
\(\rightarrow\left(x^2-6x+11\right)\left(y^2+2y+4\right)=2+4z-z^2\)
\(\rightarrow\left\{{}\begin{matrix}x=3\\y=-1\\z=2\end{matrix}\right.\)
1) Vì \(2003 \equiv 2 \pmod{2}\)
Nên xảy ra các trường hợp sau:
TH 1: Một số chia 3 dư 1, 2 , số còn lại chia 3 dư 2
Giả sử : \(x=3k+1,y=3m+2,z=3p+1\)
Khi đó: \(VT \equiv 8 \pmod{9}\) hay \(2003 \equiv 8 \pmod{9}\) (vô lí)
TH 2: Một số chia 3 dư 0 ,2 số còn lại chia 3 dư 1
Tương tự như vậy ta cũng được \(VT \equiv 2 \pmod{9}\)
Hay : \(2003 \equiv 2 \pmod{9}\)
Vậy phương trình trên vô nghiệm
$x^{3}+y^{3}+z^{3}=2003$ - Số học - Diễn đàn Toán học
bài này ko khó nhưng mình ngại làm quá,thông cảm
\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
\(\Leftrightarrow\frac{2-x}{2001}+1=\frac{1-x}{2002}+1+\left(\frac{x}{2003}-1\right)\)
\(\Leftrightarrow\frac{2-x+2001}{2001}=\frac{1-x+2002}{2002}+\frac{x-2003}{2003}\)
\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{x-2003}{2003}\)
\(\Leftrightarrow\left(x-2003\right)\left(\frac{1}{2003}+\frac{1}{2001}-\frac{1}{2002}\right)=0\)
\(\Leftrightarrow x-2003=0\)\(\left(v\text{ì}\frac{1}{2003}+\frac{1}{2001}-\frac{1}{2002}\ne0\right)\)
\(\Leftrightarrow x=2003\)
Vậy \(S=\left\{2003\right\}\)
d)Ta có : \(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
\(\Leftrightarrow\frac{2-x}{2001}+1-2=\frac{1-x}{2002}+1+1-\frac{x}{2003}-2\)\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)
\(\Leftrightarrow\frac{2003-x}{2001}-\frac{2003-x}{2002}-\frac{2003-x}{2003}=0\)\(\Leftrightarrow\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow2003-x=0\Leftrightarrow x=2003\)
Vậy phương trình có tập nghiệm S = { 2003 }
\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
\(\Leftrightarrow\frac{2-x}{2001}+1=\frac{1-x}{2002}+1+\frac{-x}{2003}+1\)
\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)
\(\Leftrightarrow\frac{2003-x}{2001}-\frac{2003-x}{2002}-\frac{2003-x}{2003}=0\)
\(\Leftrightarrow\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow2003-x=0\left(\text{ vì }\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\right)\)
<=>x=2003
Vậy S={2003}