Hãy vẽ sơ đồ hình cây của khai triển \({(a + b)^4}\) được mô tả như Hình 8.9. Sau khi khai triển, ta thu được một tổng gồm \({2^4}\) (theo quy tắc nhân) đơn thức có dạng x. y. z. t, trong đó mỗi x, y, z, t là a hoặc b. Chẳng hạn, nếu x, y, t là a, còn z là b thì ta có đơn thức a. a. b. a, thu gọn là \({a^3}b\). Để có đơn thức này, thì trong 4 nhân tử x, y, z, t có 1 nhân tử là b, 3 nhân tử còn lại là a. Khi đó số đơn thức đồng dạng với \({a^3}b\) trong tổng là \(C_4^1\).
Lập luận tương tự trên, dùng kiến thức về tổ hợp, hãy cho biết trong tổng nêu trên, có bao nhiêu đơn thức đồng dạng với mỗi đơn thức thu gọn sau.
\({a^4};\quad {a^3}b;\quad {a^2}{b^2};\quad a{b^3};\quad {b^4}?\)
Số đơn thức đồng dạng với \({a^4}\) trong tổng là \(C_4^0 = 1\)
Số đơn thức đồng dạng với \({a^3}b\) trong tổng là \(C_4^4 = 1\)
Số đơn thức đồng dạng với \({a^2}{b^2}\) trong tổng là \(C_4^2 = 6\)
Số đơn thức đồng dạng với \(a{b^3}\) trong tổng là \(C_4^3 = 1\)
Số đơn thức đồng dạng với \({b^4}\) trong tổng là \(C_4^4 = 1\)