Trong ví dụ 4, hãy xác định các kết quả thuận lợi cho biến cố:
a) “Trong ba bạn được chọn có đúng một bạn nữ”
b) “Trong ba bạn được chọn không có bạn nam nào”
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(C^1_7=7\left(cách\right)\)
b. \(C^1_3=3\left(cách\right)\)
c. Số cách không ra bạn nữ là chỉ chọn nam, vậy số cách chọn ít nhất 1 nữ là: \(7-3=4\left(cách\right)\)
Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega \right) = C_{45}^2.C_{45}^2\)
a) Gọi A là biến cố “Trong 4 bạn được chọn có ít nhất 1 bạn nam”, ta có biến cố đối \(\overline A \): “Trong 4 bạn được chọn không có bạn nam nào”
\(\overline A \) xảy ra khi các bạn được chọn đều là nữ. Số kết quả thuận lợi cho biến cố \(\overline A \) là \(n\left( {\overline A } \right) = C_{20}^2.C_{24}^2\)
Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega \right)}} = \frac{{C_{20}^2.C_{24}^2}}{{C_{45}^2.C_{45}^2}} = \frac{{874}}{{16335}}\)
Suy ra, xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{874}}{{16335}} = \frac{{15461}}{{16335}}\)
b) Gọi A là biến cố “Trong 4 bạn được chọn có đủ cả nam và nữ” ta có biến cố đối \(\overline A \): “Trong 4 bạn được chọn đều là nữ hoặc đều là nam”
\(\overline A \) xảy ra khi các bạn được chọn đều là nữ hoặc nam. Số kết quả thuận lợi cho biến cố \(\overline A \) là \(n\left( {\overline A } \right) = C_{20}^2.C_{24}^2 + C_{25}^2.C_{21}^2\)
Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega \right)}} = \frac{{C_{20}^2.C_{24}^2 + C_{25}^2.C_{21}^2}}{{C_{45}^2.C_{45}^2}} = \frac{{1924}}{{16335}}\)
Suy ra, xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{1924}}{{16335}} = \frac{{14411}}{{16335}}\)
Các kết quả thuận lợi cho biến cố A là A = {Hương; Hồng; Dung}.
Các kết quả thuận lợi cho biến cố B là B = { Hương; Hồng; Hoàng}.
- Biến cố G xảy ra khi ta chọn được một bạn nam. Do đó các kết quả thuận lợi cho biến cố G là A1, A2, A3, A4, C1, C2, C3
- Biến cố H xảy ra khi ta chọn được một bạn lớp 8C hoặc 8D. Do đó kết quả thuận lợi cho biến cố H là C1, C2, C3, D1, D2
Cách chọn 2 bạn từ 7 bạn là \(C_{7}^2 \Rightarrow n\left( \Omega \right) = C_{7}^2 = 21\)
Gọi A là biến cố: “Hai bạn được chọn có một bạn nam và một bạn nữ”.
Cách chọn một bạn nam là: 3 cách chọn
Cách chọn một bạn nữ là: 4 cách chọn
Theo quy tắc nhân ta có \(n\left( A \right) = 3.4 = 12\)
Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{12}}{{21}} = \frac{4}{7}\).
Chọn A
a) Có 3 kết quả có thể xảy ra:
+ Có 2 bạn bất kì được chọn là 2 bạn nam.
+ Có 2 bạn bất kì được chọn là 2 bạn nữ.
+ Có 2 bạn bất kì được chọn là 1 bạn nam và 1 bạn nữ.
b) Tổng số bạn trong lớp học là \(30+15=45\left(người\right)\)
Xác xuất để 2 bạn được chọn là 2 bạn nữ: \(\left(\dfrac{15}{45}\right):2=\left(\dfrac{1}{3}\right):2=16,\left(6\right)\%\)
c) Xác xuất để 2 bạn được chọn là 2 bạn nam là: \(\left(\dfrac{30}{45}\right):2=\left(\dfrac{2}{3}\right):2=33,\left(3\right)\%\)
d) Xác xuất 2 bạn được chọn có cả nam và nữ là:
\(1-16,\left(6\right)\%-33,\left(3\right)\%=5,0\left(1\right)\%\)
tham khảo
a) Số kết quả thuận lợi cho biến cố A là \(C^3_{17}=680\)
Số kết quả thuận lợi cho biến cố B là \(C^2_{17}.C^1_{15}=2040\)
b)\(A\cup B\) là biến cố "Có ít nhất 2 học sinh nữ trong 3 học sinh được chọn"Số kết quả thuận lợi cho biến cố \(A\cup B\) là:\(680+2040=2720\)Vì trong 5 bạn có 1 bạn trai nên xác suất của biến cố bạn được chọn là nam là \(\dfrac{1}{{1 + 5}} = \dfrac{1}{6}\)
a) Công việc cần qua hai công đoạn
Công đoạn 1 cần chọn một bạn nữ từ 4 bạn có 4 cách
Công đoạn 2 cần chọn 2 bạn nam từ 5 bạn và không tính đến thứ tự có \(C_5^2\) cách
Vậy có \(4.C_5^2 = 40\)kết quả thuận lợi cho biến cố “Trong ba bạn được chọn có đúng một bạn nữ”
b) Ba bạn được chọn không có bạn nam nào tức là ba bạn đều là nữ, ta chọn ra 3 bạn nữ từ 4 bạn và không tính đến thứ tự có \(C_4^3 = 4\) cách
Vậy có 4 kết quả thuận lợi cho biến cố “Trong ba bạn được chọn không có bạn nam nào”