Tam giác ABC có I là giao điểm các tia phân giác của các góc B và C. Gọi D là giao điểm củaAI và BC kẻ IH vuông góc BC (H thuộc BC) Cmr góc BIH= góc CID
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABM và tam giác ACN có: AB=AC(gt); BM=CN(gt); góc ABM= góc ACN(cùng kề bù vs góc ABC)
suy ra tam giác ABM=tam giác ACN(c.g.c)
suy ra AM=AN
suy ra tam giác AMN cân tại A
b, xét tam giác ABH và tam giác ACK có: góc AHB= goác AKC =90 độ; AB=AC(gt); góc HAB= góc KAC ( do tam giác AMB= tam giác ANC)
suy ra tam giác AHB= tam giác AKC(ch-gn)
suy ra BH=CK
a) Xét tam giác DBM và tam giác ABM có:
BM: là cạnh huyền (vừa cạnh chung)
^MDB = ^MAB = 90o
^DBM = ^ABM (giả thiết do BM là tia phân giác)
\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)
\(\Rightarrow\) AB = BD
b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:
AB = BD (CMT)
^B chung
^BAC = ^EDB = 90o
\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)
c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)
Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.
d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.
Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.
Đến đấy chịu, khi nào nghĩ ra tính tiếp.
a)Xét ∆ vuông BAM và ∆ vuông BDM ta có :
BM chung
ABM = DBM ( BM là phân giác)
=> ∆BAM = ∆BDM ( ch-gn)
=> BA = BD
AM = MD
b)Xét ∆ vuông ABC và ∆ vuông DBE ta có :
BA = BD
B chung
=> ∆ABC = ∆DBE (cgv-gn)
c) Xét ∆ vuông AKM và ∆ vuông DHM ta có :
AM = MD( cmt)
AMK = DMH ( đối đỉnh)
=> ∆AKM = ∆DHM (ch-gn)
=> MAK = HDM ( tương ứng)
Xét ∆AMN và ∆DNM ta có :
AM = MD
MN chung
MAK = HDM ( cmt)
=> ∆AMN = ∆DNM (c.g.c)
=> DNM = ANM ( tương ứng)
=> MN là phân giác AND
d) Vì MN là phân giác AND
=> M , N thẳng hàng (1)
Vì BM là phân giác ABC
=> B , M thẳng hàng (2)
Từ (1) và (2) => B , M , N thẳng hàng
a) \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}\) ; \(AB=AC\)
mà \(\widehat{ABC}+\widehat{ABM}=\widehat{ACB}+\widehat{ACN}=180^0\) (kề bù)
\(\Rightarrow\)\(\widehat{ABM}=\widehat{ACN}\)
Xét: \(\Delta ABM\)và \(\Delta ACN\)có:
\(AB=AC\)(cmt)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
\(BM=CN\)(gt)
suy ra: \(\Delta ABM=\Delta ACN\)(c.g.c)
\(\Rightarrow\)\(AM=AN\)(cạnh tương ứng)
\(\Rightarrow\)\(\Delta AMN\)cân tại \(A\)