K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

xét tam giác ABM và tam giác ACN có: AB=AC(gt); BM=CN(gt); góc ABM= góc ACN(cùng kề bù vs góc ABC)

suy ra tam giác ABM=tam giác ACN(c.g.c)

suy ra AM=AN

suy ra tam giác AMN cân tại A

16 tháng 1 2019

b, xét tam giác ABH và tam giác ACK có: góc AHB= goác AKC =90 độ; AB=AC(gt); góc HAB= góc KAC ( do tam giác AMB= tam giác ANC)

suy ra tam giác AHB= tam giác AKC(ch-gn)

suy ra BH=CK

21 tháng 7 2019

a) Xét tam giác DBM và tam giác ABM có:

BM: là cạnh huyền (vừa cạnh chung)

^MDB = ^MAB = 90o

^DBM = ^ABM (giả thiết do BM là tia phân giác)

\(\Rightarrow\)\(\Delta\)DBM = \(\Delta\) ABM (cạnh huyền - góc nhọn)

\(\Rightarrow\) AB = BD

b) Xét \(\Delta\) ABC và \(\Delta\) DBE có:

AB = BD (CMT)

^B chung

^BAC = ^EDB = 90o

\(\Rightarrow\) \(\Delta\) ABC = \(\Delta\) DBE (cạnh góc vuông - góc nhọn kề cạnh ấy)

c) (không chắc nha). Từ đề bài suy ra ^NHM = ^NKM = 90o (kề bù với ^DHM = ^AKM = 90o, giả thiết)

Từ đó, ta có N cách đều hai tia MH, MK nên nằm trên đường phân ^HMK hay MN là tia phân giác ^HMK.

d)(không chắc luôn:v) Ta sẽ chứng minh BN là tia phân giác ^ABC.

Thật vậy, từ N, hạ NF vuông góc BC, hạ NG vuông góc với AB.

Đến đấy chịu, khi nào nghĩ ra tính tiếp.

a)Xét ∆ vuông BAM và ∆ vuông BDM ta có : 

BM chung 

ABM = DBM ( BM là phân giác) 

=> ∆BAM = ∆BDM ( ch-gn)

=> BA = BD 

AM = MD

b)Xét ∆ vuông ABC và ∆ vuông DBE ta có : 

BA = BD 

B chung 

=> ∆ABC = ∆DBE (cgv-gn)

c) Xét ∆ vuông AKM và ∆ vuông DHM ta có : 

AM = MD( cmt)

AMK = DMH ( đối đỉnh) 

=> ∆AKM = ∆DHM (ch-gn)

=> MAK = HDM ( tương ứng) 

Xét ∆AMN và ∆DNM ta có : 

AM = MD 

MN chung 

MAK = HDM ( cmt)

=> ∆AMN = ∆DNM (c.g.c)

=> DNM = ANM ( tương ứng) 

=> MN là phân giác AND 

d) Vì MN là phân giác AND 

=> M , N thẳng hàng (1)

Vì BM là phân giác ABC 

=> B , M thẳng hàng (2)

Từ (1) và (2) => B , M , N thẳng hàng 

4 tháng 2 2018

a)   \(\Delta ABC\)cân tại   \(A\)

\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}\)   ;     \(AB=AC\)

mà    \(\widehat{ABC}+\widehat{ABM}=\widehat{ACB}+\widehat{ACN}=180^0\)  (kề bù)

\(\Rightarrow\)\(\widehat{ABM}=\widehat{ACN}\)

Xét:   \(\Delta ABM\)và     \(\Delta ACN\)có:

      \(AB=AC\)(cmt)

     \(\widehat{ABM}=\widehat{ACN}\)(cmt)

     \(BM=CN\)(gt)

suy ra:    \(\Delta ABM=\Delta ACN\)(c.g.c)

\(\Rightarrow\)\(AM=AN\)(cạnh tương ứng)

\(\Rightarrow\)\(\Delta AMN\)cân tại   \(A\)

15 tháng 8 2017

bạn tự vẽ hình nhé :)

Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=> B+C=180-60=120

=> 1/2B+1/2C=1/2.120=60

=> IBC+ICB=60

Ta lại có:

\(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^0\)

=> BIC=120

Vậy BIC=120

( bạn nhớ thêm các kí hiệu nhé )

15 tháng 8 2017

Tự vẽ hình nha:

a) Theo định lý tổng 3 góc trong 1 \(\Delta\)ta có

\(\Delta\)ABC có :\(\widehat{CAB}+\widehat{ABC}+\widehat{ACB}\)= 1800

hay 60* + \(\widehat{ABC}+\widehat{ACB}\)=1800

\(\Rightarrow\)\(\widehat{ABC}+\widehat{ACB}\)=1800 - 600 =1200

Vì CE và BD là tia phân giác của \(\widehat{ABC}\)và \(\widehat{ACB}\)

\(\Rightarrow\)\(\widehat{DBC}+\widehat{ECB}\)\(\frac{120^0}{2}\)=600

Theo định lý tổng 3 góc trong 1 \(\Delta\)ta có

\(\Delta CIB\)có : \(\widehat{ICB}+\widehat{IBC}+\widehat{BIC}\)=1800

hay  600 + \(\widehat{BIC}\)=1800

\(\Rightarrow\)\(\widehat{BIC}\)=1800 - 600 = 1200