K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Quan sát vào độ thị ta thấy đoạn mà đồ thị nằm dưới truch hoành là \(\left[ { - 2;\frac{5}{2}} \right]\)

Vậy nghiệm của bất phương trình \({x^2} - 0,5x - 5 \le 0\) là đoạn  \(\left[ { - 2;\frac{5}{2}} \right]\)

b) Quan sát vào đồ thị ta thấy đồ thị luôn nằm dưới trục hoành

Vậy nghiệm của bất phương trình \( - 2{x^2} + x - 1 > 0\) vô nghiệm

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Dựa vào đồ thị ta thấy \({x^2} + 2,5x - 1,5 \le 0\) khi x thuộc đoạn \(\left[ { - 3;\frac{1}{2}} \right]\)

Vậy nghiệm của bất phương trình \({x^2} + 2,5x - 1,5 \le 0\) là \(\left[ { - 3;\frac{1}{2}} \right]\)

b) Dựa vào đồ thị ta thấy \( - {x^2} - 8x - 16 < 0\) với mọi x khác \( - 4\)

Vậy nghiệm của bất phương trình \( - {x^2} - 8x - 16 < 0\) là \(\mathbb{R}\backslash \left\{ { - 4} \right\}\)

c) Dựa vào đồ thị ta thấy \( - 2{x^2} + 11x - 12 > 0\) khi x thuộc khoảng \(\left( {\frac{3}{2};4} \right)\)

Vậy nghiệm của bất phương trình \( - 2{x^2} + 11x - 12 > 0\) là \(\left( {\frac{3}{2};4} \right)\)

d) Dựa vào đồ thị ta thấy đồ thị của tam thức \(f\left( x \right) = \frac{1}{2}{x^2} + \frac{1}{2}x + 1\) nằm hoàn toàn phía trên trục hoành với mọi x

Vậy bất phương trình \(\frac{1}{2}{x^2} + \frac{1}{2}x + 1 \le 0\) vô nghiệm.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Hình 30a:

\(f\left( x \right) > 0\) có tập nghiệm là \(S = \left( { - \infty ;1} \right) \cup \left( {4; + \infty } \right)\)

\(f\left( x \right) < 0\) có tập nghiệm là \(S = \left( {1;4} \right)\)

\(f\left( x \right) \ge 0\) có tập nghiệm là \(S = \left( { - \infty ;1} \right] \cup \left[ {4; + \infty } \right)\)

\(f\left( x \right) \le 0\) có tập nghiệm là \(S = \left[ {1;4} \right]\)

Hình 30b:

\(f\left( x \right) > 0\) có tập nghiệm là \(S = \mathbb{R}\backslash \left\{ 2 \right\}\)

\(f\left( x \right) < 0\) có tập nghiệm là \(S = \emptyset \)

\(f\left( x \right) \ge 0\) có tập nghiệm là \(S = \mathbb{R}\)

\(f\left( x \right) \le 0\) có tập nghiệm là \(S = \left\{ 2 \right\}\)

Hình 30c:

\(f\left( x \right) > 0\) có tập nghiệm là \(S = \mathbb{R}\)

\(f\left( x \right) < 0\) có tập nghiệm là \(S = \emptyset \)

\(f\left( x \right) \ge 0\) có tập nghiệm là \(S = \mathbb{R}\)

\(f\left( x \right) \le 0\) có tập nghiệm là \(S = \emptyset \)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Tam thức \(f\left( x \right) = {x^2} + 1,5x - 1\) có hai nghiệm phân biệt \({x_1} =  - 2;{x_2} = \frac{1}{2}\)

\(\)\(f\left( x \right) > 0\) khi \(x \in \left( { - \infty , - 2} \right) \cup \left( {\frac{1}{2}, + \infty } \right)\) và \(f\left( x \right) < 0\) khi \(x \in \left( { - 2,\frac{1}{2}} \right)\)

Ta có bảng xét dấu như sau

 

b) Tam thức \(g\left( x \right) = {x^2} + x + 1\) vô nghiệm, \(g\left( x \right) > 0\forall x \in \mathbb{R}\)

Ta có bảng xét dấu như sau

 

c) Tam thức \(h\left( x \right) =  - 9{x^2} - 12x - 4\) có nghiệm kép \({x_1} = {x_2} =  - \frac{2}{3}\) và \(h\left( x \right) < 0\forall x \ne  - \frac{2}{3}\)

Ta có bảng xét dấu như sau

 

d) Tam thức \(f\left( x \right) =  - 0,5{x^2} + 3x - 6\) vô nghiệm và \(f\left( x \right) < 0\forall x \in \mathbb{R}\)

Ta có bảng xét dấu như sau:

 

e) Tam thức \(g\left( x \right) =  - {x^2} - 0,5x + 3\) có hai nghiệm \({x_1} =  - 2,{x_2} = \frac{3}{2}\)

\(g\left( x \right) > 0\) khi \(x \in \left( { - 2,\frac{3}{2}} \right)\) và \(g\left( x \right) < 0\) khi \(x \in \left( { - \infty , - 2} \right) \cup \left( {\frac{3}{2}, + \infty } \right)\)

Ta có bảng xét dấu như

 

g) Tam thức \(h\left( x \right) = {x^2} + 2\sqrt 2 x + 2\) có nghiệm kép \({x_1} = {x_2} =  - \sqrt 2 \)

\(h\left( x \right) > 0\forall x \ne  - \sqrt 2 \)

Ta có bảng xét dấu như sau

18 tháng 11 2017

30 tháng 7 2018

Số nghiệm của phương trình x 3 = b là số giao điểm của hai đồ thị hàm số y = b và y = x 3 .

Dựa vào H26 ta có đồ thị hàm số  y = x 3  luôn cắt đường thẳng y = b tại một điểm duy nhất với mọi b nên phương trình x 3 = b luôn có nghiệm duy nhất với mọi b.

Số nghiệm của phương trình x 4 = b (1) là số giao điểm của hai đồ thị hàm số y = b và y = x 4 . Dựa và hình 27 ta có:

+ Với b < 0 hai đồ thị hàm số trên không giao nhau, vậy phương trình (1) vô nghiệm.

+ Với b = 0, hai đồ thị hàm số tiếp xúc nhau tại (0,0), vậy phương trình (1) có nghiệm duy nhất x = 0.

+ Với b > 0, hai đồ thị hàm số cắt nhau tại hai điểm phân biết, vậy phương trình (1) có hai nghiệm phân biệt.

NV
30 tháng 12 2020

Pt hoành độ giao điểm:

\(-x^2+2x+3=-2x+1\)

\(\Leftrightarrow x^2-4x-2=0\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{6}\Rightarrow y=-3-2\sqrt{6}\\x=2-\sqrt{6}\Rightarrow y=-3+2\sqrt{6}\end{matrix}\right.\)

Vậy tọa độ giao điểm là: \(\left(2+\sqrt{6};-3-2\sqrt{6}\right)\)

 Và \(\left(2-\sqrt{6};-3+2\sqrt{6}\right)\)

30 tháng 12 2020

\(\left(P\right):y=-x^2+2x+3\\ \left(d\right):y=-2x+1\)

xét phương trình hoành độ giao điểm của (P) và (d) 

\(-x^2+2x+3=-2x+1\)

\(< =>-x^2+4x+2=0\)

\(< =>\left[{}\begin{matrix}x=2+\sqrt{6}\\x=2-\sqrt{6}\end{matrix}\right.\)

thay vào (d) => \(\left[{}\begin{matrix}x=2+\sqrt{6}=>y=-3-2\sqrt{6}\\x=2-\sqrt{6}=>y=-3+2\sqrt{6}\end{matrix}\right.\)

vậy ...

 

 

 

24 tháng 6 2019

Xét phương trình x2 – 2m + 4 = 0 (*)

x2 = 2m – 4 ⇔ 1 2 x 2 = m − 2

Số nghiệm của phương trình (*) là

số giao điểm của parabol (P): y = 1 2 x 2

và đường thẳng d: y = m – 2

Để (*) có hai nghiệm phân biệt thì d cắt (P) tại hai điểm phân biệt

Từ đồ thị hàm số ta thấy:

Với m – 2 > 0 ⇔ m > 2 thì d cắt (P)

tại hai điểm phân biệt hay phương trình (*)

có hai nghiệm phân biệt khi m > 2

Đáp án cần chọn là: A

15 tháng 3 2019

Ta có 2x2 – m – 5 = 0 (*)

⇔ 2x2 = m + 5

Số nghiệm của phương trình (*) là số giao điểm của

parabol (P): y = 2x2và đường thẳng d: y = m + 5

Để (*) có hai nghiệm phân biệt thì d cắt (P) tại

hai điểm phân biệt.Từ đồ thị hàm số ta thấy:

Với m + 5 > 0m > −5 thì d cắt (P)

tại hai điểm phân biệt hay phương trình (*)

có hai nghiệm phân biệt khi m > −5

Đáp án cần chọn là: D

20 tháng 8 2019

Đáp án D