Bài 17. Cho tam giác ABC cân tại A (góc A nhọn), các đường cao BD, CE cắt nhau
tại H. Tia phân giác của góc ABD cắt CE và AC theo thứ tự tại M và P. Tia
phân giác của góc ACE cắt BD và AB theo thứ tự ở Q và N. BP cắt CN tại O.
Chứng minh
1. góc ABD = góc ACE (*)
2. BH = CH. (*)
3. Tam giác BOC là tam giác vuông cân.
4. MNP Q là hình vuông.
(*) GẤP Ạ 2 CÂU ĐÓ CŨNG OKK
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
6 tháng 10 2017
a) Sử dụng tính chất tổng các góc trong một tam giác bằng 1800.
⇒ A B C ^ = A E C ^ ⇒ N B D ^ = M C A ^
Trong DDBN có: N B D ^ + B N D ^ = 90 0
Gọi O = CM Ç BN Þ CM ^ BN = O (1)
b) Xét DCNK có: CO ^ KN Þ CO ^ BN, CO là phân giác A C E ^ nên DCNK cân ở C Þ O là trung điểm KN (2).
Tương tự chứng minh được là trung điểm MH (3).
Từ (1),(2) và (3) suy ra MNHK là hình thoi.
1: ΔABD vuông tại D
=>\(\widehat{ABD}+\widehat{BAD}=90^0\)
=>\(\widehat{ABD}+\widehat{BAC}=90^0\left(1\right)\)
ΔACE vuông tại E
=>\(\widehat{ACE}+\widehat{CAE}=90^0\)
=>\(\widehat{ACE}+\widehat{BAC}=90^0\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{ABD}=\widehat{ACE}\)(3)
2: \(\widehat{ABD}+\widehat{DBC}=\widehat{ABC}\)
\(\widehat{ACE}+\widehat{ECB}=\widehat{ACB}\)
mà \(\widehat{ABD}=\widehat{ACE};\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{DBC}=\widehat{ECB}\)
=>\(\widehat{HBC}=\widehat{HCB}\)
=>ΔHBC cân tại H
=>HB=HC
3: BO là phân giác của góc ABD
=>\(\widehat{ABO}=\dfrac{1}{2}\cdot\widehat{ABD}\left(4\right)\)
CO là phân giác của góc ACE
=>\(\widehat{ACO}=\dfrac{1}{2}\cdot\widehat{ACE}\left(5\right)\)
Từ (3),(4),(5) suy ra \(\widehat{ABO}=\widehat{ACO}\)
\(\widehat{ABO}+\widehat{OBC}=\widehat{ABC}\)
\(\widehat{ACO}+\widehat{OCB}=\widehat{ACB}\)
mà \(\widehat{ABO}=\widehat{ACO};\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
=>OB=OC