K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

A B C E D M N O

Theo cái hình này thì mình thấy BN không cắt CE tại một điểm nào đấy khác E đâu bạn. Hơn nữa BN cũng không thể vuông góc với CM do ΔABC nhọn. Bạn xem lại đề giúp mình nha :D

a: góc HMC+góc HNC=180 độ

=>HMCN nội tiếp

b: góc CED=góc CAD

góc CDE=góc CAE

mà góc CAD=góc CAE(=góc CBD)

nên góc CED=góc CDE

=>CD=CE

a: Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BCDE là tứ giác nội tiếp

b: Xét ΔDHC vuông tại D và ΔDAB vuông tại D có 

\(\widehat{HCD}=\widehat{ABD}\)

Do đó: ΔDHC\(\sim\)ΔDAB

Suy ra: DH/DA=DC/DB

hay \(DH\cdot DB=DA\cdot DC\)

3 tháng 10 2015

A B C D E I K H M N

14 tháng 3 2022

 

Ta có CE là tia phân giác của ACB

=> góc ACE= góc BCE

=>  cung AE= cung BE

Ta có BD là tia phân giác góc ABC 

=> góc ABD= góc DBC

=> cung AD= cung DC

Ta có  góc AMN=( cung AD+ EB)

           góc ANM=( cung DC+ AE)

mak cung AE= cung BE và cung AD= cung DC

=> góc AMN= góc ANM=> tam giác AMN cân

Ta có BD là đường phân giác thứ 1 (gt)

          CE là đường phân giác thứ 2(gt)

mak BD giao CE tại I

=> I là trọng tâm

=> AI là đường phân giác thứ 3

=> góc BAI= góc IAC 

Ta có góc IAD= góc IAC+góc CAD

mak góc IAC=góc BAI(cmt) và góc CAD= góc ABI(vì góc CAD chắn cung DC và góc ABI chắn cung AD mak cung AD= cung DC (cmt) )

=>góc IAD=góc BAI+góc ABI(1)

Ta cso góc AID là góc ngoài của tam giác ABI

=> góc AID= góc BAI+góc ABI(2)

từ (1) và (2) =>góc IAD= góc AID

=> tam giác AID cân

14 tháng 3 2022

Tớ làm lại nha cái kia bị lỗi với lại là cậu tự vẽ hình nha tớ vẽ hình gửi vào đây nó bị lỗi k hiện á

Ta có CE là tia phân giác của ACB

=> góc ACE= góc BCE

=>  cung AE= cung BE

Ta có BD là tia phân giác góc ABC 

=> góc ABD= góc DBC

=> cung AD= cung DC

Ta có  góc AMN=\(\dfrac{1}{2}\)( cung AD+ EB)

            góc ANM=\(\dfrac{1}{2}\)( cung DC+ AE)

mak cung AE= cung BE và cung AD= cung DC

=> góc AMN= góc ANM=> tam giác AMN cân

Ta có BD là đường phân giác thứ 1 (gt)

          CE là đường phân giác thứ 2(gt)

mak BD giao CE tại I

=> I là trọng tâm

=> AI là đường phân giác thứ 3

=> góc BAI= góc IAC 

Ta có góc IAD= góc IAC+góc CAD

mak góc IAC=góc BAI(cmt) và góc CAD= góc ABI(vì góc CAD chắn cung DC và góc ABI chắn cung AD mak cung AD= cung DC (cmt) )

=>góc IAD=góc BAI+góc ABI(1)

Ta cso góc AID là góc ngoài của tam giác ABI

=> góc AID= góc BAI+góc ABI(2)

từ (1) và (2) =>góc IAD= góc AID

=> tam giác AID cân

          

25 tháng 5 2018

Giờ mình ko rảnh và máy tính đanhg hư nên ko làm đc thông cảm nhá

25 tháng 5 2018

HD

image006

Câu 1.

Tự CM.

Câu 2:

Kẻ AO cắt đường tròn tại F

Để ý góc ADE=góc EBC=góc AFC

Mà góc CAF+góc FAC =90°

⇒góc ADE+góc FAC =90°hay AF ⊥ DE.

Vậy đường thẳng kẻ qua A vuông góc DE luôn đi qua điểm cố định O.

Câu 3:

Gọi giao CQ và BP là O’

Dễ thấy góc ABP=góc QCE (cùng bằng 1/2 góc ABD = 1/2 góc ACE)

⇒ góc ABP+góc QCE=90° hay BP ⊥ CQ tại O’

⇒ các ΔBQN,  ΔCMP có đường phân giác đồng thời là đường cao nên cân tại B và C

⇒ O’M=O’P; O’N=O’Q; lại có QN ⊥ MP, nên tứ giác MNPQ là hình thoi

a) Gọi G là trung điểm của BC

Ta có: ΔDBC vuông tại D(BD\(\perp\)AC tại D)

mà DG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(DG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Ta có: ΔEBC vuông tại E(CE\(\perp\)AB)

mà EG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(EG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Ta có: G là trung điểm của BC(gt)

nên \(BG=CG=\dfrac{BC}{2}\)(3)

Từ (1), (2) và (3) suy ra GB=GC=GE=GD

hay B,C,D,E cùng nằm trên một đường tròn(đpcm)

18 tháng 2 2021

cần câu d :v