Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo cái hình này thì mình thấy BN không cắt CE tại một điểm nào đấy khác E đâu bạn. Hơn nữa BN cũng không thể vuông góc với CM do ΔABC nhọn. Bạn xem lại đề giúp mình nha :D
a: góc HMC+góc HNC=180 độ
=>HMCN nội tiếp
b: góc CED=góc CAD
góc CDE=góc CAE
mà góc CAD=góc CAE(=góc CBD)
nên góc CED=góc CDE
=>CD=CE
a: Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BCDE là tứ giác nội tiếp
b: Xét ΔDHC vuông tại D và ΔDAB vuông tại D có
\(\widehat{HCD}=\widehat{ABD}\)
Do đó: ΔDHC\(\sim\)ΔDAB
Suy ra: DH/DA=DC/DB
hay \(DH\cdot DB=DA\cdot DC\)
Ta có CE là tia phân giác của ACB
=> góc ACE= góc BCE
=> cung AE= cung BE
Ta có BD là tia phân giác góc ABC
=> góc ABD= góc DBC
=> cung AD= cung DC
Ta có góc AMN=( cung AD+ EB)
góc ANM=( cung DC+ AE)
mak cung AE= cung BE và cung AD= cung DC
=> góc AMN= góc ANM=> tam giác AMN cân
Ta có BD là đường phân giác thứ 1 (gt)
CE là đường phân giác thứ 2(gt)
mak BD giao CE tại I
=> I là trọng tâm
=> AI là đường phân giác thứ 3
=> góc BAI= góc IAC
Ta có góc IAD= góc IAC+góc CAD
mak góc IAC=góc BAI(cmt) và góc CAD= góc ABI(vì góc CAD chắn cung DC và góc ABI chắn cung AD mak cung AD= cung DC (cmt) )
=>góc IAD=góc BAI+góc ABI(1)
Ta cso góc AID là góc ngoài của tam giác ABI
=> góc AID= góc BAI+góc ABI(2)
từ (1) và (2) =>góc IAD= góc AID
=> tam giác AID cân
Tớ làm lại nha cái kia bị lỗi với lại là cậu tự vẽ hình nha tớ vẽ hình gửi vào đây nó bị lỗi k hiện á
Ta có CE là tia phân giác của ACB
=> góc ACE= góc BCE
=> cung AE= cung BE
Ta có BD là tia phân giác góc ABC
=> góc ABD= góc DBC
=> cung AD= cung DC
Ta có góc AMN=\(\dfrac{1}{2}\)( cung AD+ EB)
góc ANM=\(\dfrac{1}{2}\)( cung DC+ AE)
mak cung AE= cung BE và cung AD= cung DC
=> góc AMN= góc ANM=> tam giác AMN cân
Ta có BD là đường phân giác thứ 1 (gt)
CE là đường phân giác thứ 2(gt)
mak BD giao CE tại I
=> I là trọng tâm
=> AI là đường phân giác thứ 3
=> góc BAI= góc IAC
Ta có góc IAD= góc IAC+góc CAD
mak góc IAC=góc BAI(cmt) và góc CAD= góc ABI(vì góc CAD chắn cung DC và góc ABI chắn cung AD mak cung AD= cung DC (cmt) )
=>góc IAD=góc BAI+góc ABI(1)
Ta cso góc AID là góc ngoài của tam giác ABI
=> góc AID= góc BAI+góc ABI(2)
từ (1) và (2) =>góc IAD= góc AID
=> tam giác AID cân
Giờ mình ko rảnh và máy tính đanhg hư nên ko làm đc thông cảm nhá
HD
Câu 1.
Tự CM.
Câu 2:
Kẻ AO cắt đường tròn tại F
Để ý góc ADE=góc EBC=góc AFC
Mà góc CAF+góc FAC =90°
⇒góc ADE+góc FAC =90°hay AF ⊥ DE.
Vậy đường thẳng kẻ qua A vuông góc DE luôn đi qua điểm cố định O.
Câu 3:
Gọi giao CQ và BP là O’
Dễ thấy góc ABP=góc QCE (cùng bằng 1/2 góc ABD = 1/2 góc ACE)
⇒ góc ABP+góc QCE=90° hay BP ⊥ CQ tại O’
⇒ các ΔBQN, ΔCMP có đường phân giác đồng thời là đường cao nên cân tại B và C
⇒ O’M=O’P; O’N=O’Q; lại có QN ⊥ MP, nên tứ giác MNPQ là hình thoi
a) Gọi G là trung điểm của BC
Ta có: ΔDBC vuông tại D(BD\(\perp\)AC tại D)
mà DG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)
nên \(DG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)
Ta có: ΔEBC vuông tại E(CE\(\perp\)AB)
mà EG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)
nên \(EG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)
Ta có: G là trung điểm của BC(gt)
nên \(BG=CG=\dfrac{BC}{2}\)(3)
Từ (1), (2) và (3) suy ra GB=GC=GE=GD
hay B,C,D,E cùng nằm trên một đường tròn(đpcm)