K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2019

ta có :\(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\left(a>0;b>0\right)\)

\(\Leftrightarrow a+b=a+b-2+2\sqrt{\left(a-1\right)\left(b-1\right)}\)

\(\Leftrightarrow\sqrt{\left(a-1\right)\left(b-1\right)}=1\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=1\)

\(\Leftrightarrow ab-a-b+1=1\Leftrightarrow ab-a-b=0\)(1)

ta lại có :\(\frac{1}{a}+\frac{1}{b}=1\Leftrightarrow\frac{a+b}{ab}=1\Leftrightarrow ab=a+b\left(2\right)\)

từ (1) và (2) \(\Leftrightarrow a+b-a-b=0\Leftrightarrow0=0\)(luôn đúng)

=> đpcm

13 tháng 5 2018

bạn làm dc chưa

17 tháng 5 2018

Lm đc r

19 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}=\sqrt{a}\sqrt{3a+b}+\sqrt{b}\sqrt{3b+a}\)

\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}=2\left(a+b\right)\)

\(\Rightarrow\dfrac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\dfrac{a+b}{2\left(a+b\right)}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(a=b\)

12 tháng 5 2019

giải thích chỗ đang <= rồi chuyển sang >= là sao

 

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha