K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2023

a: E là trung điểm của AB

=>\(AE=EB=\dfrac{AB}{2}\left(1\right)\)

F là trung điểm của CD

=>\(FC=FD=\dfrac{CD}{2}\left(2\right)\)

ABCD là hình bình hành

=>AB=CD(3)

Từ (1),(2),(3) suy ra AE=EB=CF=FD=AB/2

mà AD=BC=AB/2

nên AE=EB=CF=FD=AD=BC

Xét tứ giác AEFD có

AE//FD

AE=FD

Do đó: AEFD là hình bình hành

Hình bình hành AEFD có AE=AD

nên AEFD là hình thoi

Xét tứ giác DEBF có

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: Xét tứ giác BEFC có

BE//FC

BE=FC

Do đó: BEFC là hình bình hành

Hình bình hành BEFC có BE=BC

nên BEFC là hình thoi

=>EC vuông góc BF tại trung điểm của mỗi đường

=>EC vuông góc BF tại K và K là trung điểm chung của EC và BF

AEFD là hình thoi

=>AF vuông góc ED tại trung điểm của mỗi đường

=>AF vuông góc ED tại I và I là trung điểm chung của AF và ED

Xét ΔEDC có

I,K lần lượt là trung điểm của ED,EC

=>IK là đường trung bình của ΔEDC

=>IK//DC và IK=DC/2

IK=DC/2

DF=DC/2

Do đó: IK=DF

IK//DC

\(F\in DC\)

Do đó: IK//DF

Xét tứ giác DIKF có

IK//DF

IK=DF

Do đó: DIKF là hình bình hành

Xét ΔEDC có

EF là đường trung tuyến

\(EF=\dfrac{DC}{2}\)

Do đó: ΔEDC vuông tại E

Xét tứ giác EIFK có

\(\widehat{EIF}=\widehat{EKF}=\widehat{IEK}=90^0\)

=>EIFK là hình chữ nhật

c: Hình chữ nhật EIFK là hình vuông khi EI=FI

=>ED=AF

Hình thoi AEFD có ED=AF

nên AEFD là hình vuông

=>\(\widehat{BAD}=90^0\)

Bài 4: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.  a. Các tứ giác AEFD, AECF là hình gì? Vì sao?  b. gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.  c. Hình bình hành ABCD cần thêm điều kiện gì thì EMFN là hình vuông?Bài 5: Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của điểm D trên...
Đọc tiếp

Bài 4: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.

  a. Các tứ giác AEFD, AECF là hình gì? Vì sao?

  b. gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.

  c. Hình bình hành ABCD cần thêm điều kiện gì thì EMFN là hình vuông?

Bài 5: Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của điểm D trên cạnh AB, AC.

  a. Chứng minh tứ giác ANDM là hình chữ nhật.

  b. Gọi I, K lần lượt là điểm đối xứng của N, M qua D. Tứ giác MNKI là hình gì? Vì sao?

  c. Kẻ đường cao AH của tam giác ABC (H thuộc BC). Tính số đo góc MHN.

Bài 6. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D.

  a. Chứng minh rằng điểm E đối xứng với điểm M qua AB.

  b. Các tứ giác AEMC, AEBM là hình gì? Vì sao?

 

  c. Cho BC = 4cm, tính chu vi tứ giác AEBM.

1
18 tháng 12 2022

Bài 6:

a: Xét ΔABC có BD/BA=BM/BC

nên MD//AC

=>ME vuông góc với AB

=>E đối xứng M qua AB

b: Xét tứ giác AEBM có

D là trung điểm chung của AB và EM

MA=MB

Do đó; AEBM là hình thoi

Xét tứ giac AEMC có

AE//MC

AE=MC

Do đó: AEMC là hình bình hành

c: BM=BC/2=2cm

=>CAEBM=2*4=8cm

30 tháng 12 2021

b tham khảo nha

undefined

a) Do ABCD là hình bình hành nên AB= CD và AB//CD

Và E và F là trung điểm của AB và CD => AE=BE=CF=DF và BE//DF

Xét tứ giác DEBF có : BE//DF và BE=DF=> DEBF là hình bình hành

b)

Xét AEDF có AE//DF và AE=DF=> AEDF là hình bình hành

Lại có: CD= 2BC= 2 AD nên AD= AE (=1/2 CD)

=> hình bình hành AEDF là hình thoi

c)ta cm được AECF là hình bình hành và M, N là trung điểm của AF và CE

=> MF= EN và MF//EN=> EMFN là hình bình hành

Lại có AEDF là hình thoi nên AN⊥DE tại M

=> góc EMF vuông=> hình bình hành EMFN là hình chữ nhật

d) Chứng minh được

SAFB=12SABCDSBEC=14SABCDˆB=600⇒ΔBECdeucanh=AB2=2(cm)⇒SBEC=√3(cm2)⇒SAFB

30 tháng 12 2021

góc D = 60 độ mà bạn

 

28 tháng 2 2017

a) bạn tự vẽ hình nhé!

Có : \(AE=BE=\frac{1}{2}AB\) (đề cho)

\(DF=CF=\frac{1}{2}DC\) (đề cho)

mà \(AB=CD\)

\(\Rightarrow\) \(AE=BE=DF=CF\)

Xét tứ giác AEFD có:

\(AE=DF\) (cmt) và AE//DF( AB//CD)

\(\Rightarrow\) Tứ giác AEFD là hình bình hành

Xét tứ giác AECF có :

AE = CF ( cmt) và AE//CF ( AB//CD)

\(\Rightarrow\) Tứ giác AECF là hình bình hành

28 tháng 2 2017

M là giao điểm của AF và DE

\(\Rightarrow\) AM = FM=\(\frac{1}{2}AF\) ( tính chất đ/chéo hbhành) (1)

N là giao điểm của BF và CE

\(\Rightarrow\) EN = CN=\(\frac{1}{2}CE\) ( tính chất đ/chéo hbhành) (2)

Có AF = AM + FM

CE = EN + CN

mà AE = CE ( AECF là hbh)

Từ (1) và (2) suy ra MF= EN và MF//EN ( AF//CE )

\(\Rightarrow\) EMFN là hình bình hành (3)

Có AE = AD ( cùng bằng 2AB ) và AEFD là hình bình hành nên AEFD là hình thoi

\(\Rightarrow\) AF \(\perp\) DE tại M hay góc EMF = 90 độ (4)

Từ (3) và (4) suy ra : EMFN là hcn

5 tháng 11 2017

Giúp với

5 tháng 11 2017

Cho hình bình hành ABCD có AB = 2AD. Gọi E là trung điểm của AB,F trung điểm của CD, I là giao điểm của AF và DE, K là giao điểm của BF và CE 

a) Tứ giác AECF là hình gì ? Vì sao ?

b) Tứ giác AEFD là hình gì ? Vì sao ?

30 tháng 5 2017

A D F M E B C N

a) Tứ giác AEFD là hình thoi, tứ giác AECF là hình bình hành (tự chứng minh).

b) Tứ giác AECF là hình bình hành nên EN // FM. Tứ giác AECF là hình bình hành nên EM // FN. AEFD là hình thoi nên AF \(\perp\) DE.

Hình bình hành EMFN có \(\widehat{M}=90^o\) nên là hình chữ nhật.

c) Hình chữ nhật EMFN là hình vuông

\(\Leftrightarrow\) ME = MF \(\Leftrightarrow\) DE = AF (vì DE = 2ME, AF = 2MF)

\(\Leftrightarrow\) Hình thoi AEFD có hai đường chéo bằng nhau

\(\Leftrightarrow\) AEFD là hình vuông \(\Leftrightarrow\) \(\widehat{A}=90^o\).

\(\Leftrightarrow\) Hình bình hành ABCD là hình chữ nhật.

Như vậy, hình chữ nhật EMFN là hình vuông nếu ABCD là hình chữ nhật.

3 tháng 11 2018

Bạn kham khảo nha

Ôn tập : Tứ giác

25 tháng 12 2021

Bài 8:

a: Xét tứ giác AEFD có 

AE//FD

AE=FD

Do đó: AEFD là hình bình hành

mà AE=AD

nên AEFD là hình thoi

25 tháng 12 2021

hình đâu

 

12 tháng 12 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tứ giác AEFD là hình thoi

⇒ AF ⊥ ED ⇒  ∠ (EMF) = 90 0

AF // CE (vì tứ giác AECF là hình bình hành)

Suy ra: CE ⊥ ED ⇒  ∠ (MEN) =  90 0

Xét tứ giác EBFD, ta có: EB = FD (vì cùng bằng AE)

EB // FD (vì AB // CD)

Tứ giác EBFD là hình bình hành (vì có một cặp cạnh đổi song song và bằng nhau) ⇒ DE // BF

Suy ra: BF ⊥ AF ⇒ ∠ (MFN) = 90 0

Vậy tứ giác EMFN là hình chữ nhật.