K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

b tham khảo nha

undefined

a) Do ABCD là hình bình hành nên AB= CD và AB//CD

Và E và F là trung điểm của AB và CD => AE=BE=CF=DF và BE//DF

Xét tứ giác DEBF có : BE//DF và BE=DF=> DEBF là hình bình hành

b)

Xét AEDF có AE//DF và AE=DF=> AEDF là hình bình hành

Lại có: CD= 2BC= 2 AD nên AD= AE (=1/2 CD)

=> hình bình hành AEDF là hình thoi

c)ta cm được AECF là hình bình hành và M, N là trung điểm của AF và CE

=> MF= EN và MF//EN=> EMFN là hình bình hành

Lại có AEDF là hình thoi nên AN⊥DE tại M

=> góc EMF vuông=> hình bình hành EMFN là hình chữ nhật

d) Chứng minh được

SAFB=12SABCDSBEC=14SABCDˆB=600⇒ΔBECdeucanh=AB2=2(cm)⇒SBEC=√3(cm2)⇒SAFB

30 tháng 12 2021

góc D = 60 độ mà bạn

 

30 tháng 5 2017

A D F M E B C N

a) Tứ giác AEFD là hình thoi, tứ giác AECF là hình bình hành (tự chứng minh).

b) Tứ giác AECF là hình bình hành nên EN // FM. Tứ giác AECF là hình bình hành nên EM // FN. AEFD là hình thoi nên AF \(\perp\) DE.

Hình bình hành EMFN có \(\widehat{M}=90^o\) nên là hình chữ nhật.

c) Hình chữ nhật EMFN là hình vuông

\(\Leftrightarrow\) ME = MF \(\Leftrightarrow\) DE = AF (vì DE = 2ME, AF = 2MF)

\(\Leftrightarrow\) Hình thoi AEFD có hai đường chéo bằng nhau

\(\Leftrightarrow\) AEFD là hình vuông \(\Leftrightarrow\) \(\widehat{A}=90^o\).

\(\Leftrightarrow\) Hình bình hành ABCD là hình chữ nhật.

Như vậy, hình chữ nhật EMFN là hình vuông nếu ABCD là hình chữ nhật.

3 tháng 11 2018

Bạn kham khảo nha

Ôn tập : Tứ giác

Bài 4: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.  a. Các tứ giác AEFD, AECF là hình gì? Vì sao?  b. gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.  c. Hình bình hành ABCD cần thêm điều kiện gì thì EMFN là hình vuông?Bài 5: Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của điểm D trên...
Đọc tiếp

Bài 4: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.

  a. Các tứ giác AEFD, AECF là hình gì? Vì sao?

  b. gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.

  c. Hình bình hành ABCD cần thêm điều kiện gì thì EMFN là hình vuông?

Bài 5: Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của điểm D trên cạnh AB, AC.

  a. Chứng minh tứ giác ANDM là hình chữ nhật.

  b. Gọi I, K lần lượt là điểm đối xứng của N, M qua D. Tứ giác MNKI là hình gì? Vì sao?

  c. Kẻ đường cao AH của tam giác ABC (H thuộc BC). Tính số đo góc MHN.

Bài 6. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D.

  a. Chứng minh rằng điểm E đối xứng với điểm M qua AB.

  b. Các tứ giác AEMC, AEBM là hình gì? Vì sao?

 

  c. Cho BC = 4cm, tính chu vi tứ giác AEBM.

1
18 tháng 12 2022

Bài 6:

a: Xét ΔABC có BD/BA=BM/BC

nên MD//AC

=>ME vuông góc với AB

=>E đối xứng M qua AB

b: Xét tứ giác AEBM có

D là trung điểm chung của AB và EM

MA=MB

Do đó; AEBM là hình thoi

Xét tứ giac AEMC có

AE//MC

AE=MC

Do đó: AEMC là hình bình hành

c: BM=BC/2=2cm

=>CAEBM=2*4=8cm

a: Xét tứ giác AEFD có

AE//FD

AE=FD

Do đó: AEFD là hình bình hành

mà AE=AD

nên AEFD là hình thoi

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét tứ giác BEFC có

BE//FC

BE=FC

Do đó: BEFC là hình bình hành

mà BE=BC

nên BEFC là hình thoi

=>EC\(\perp\)BF tại N

Ta có: AEFD là hình thoi

nên AF\(\perp\)ED tại M

Xét ΔEDC có

EF là đường trung tuyến

EF=DC/2

Do đó:ΔEDC vuông tại E

Xét tứ giác EMFN có 

\(\widehat{EMF}=\widehat{ENF}=\widehat{NEM}=90^0\)

Do đó: EMFN là hình chữ nhật

c: Để EMFN là hình vuông thì ME=MF

=>AF=DE

Hình thoi AEFD có AF=DE

nên AEFD là hình vuông

=>\(\widehat{BAD}=90^0\)

27 tháng 12 2020
Bạn tham khảo ạ !

Bài tập Tất cả