K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2023

a)

A = 3 + 32 + 33 + ... + 36

3A = 32 + 33 + 34 + ...  + 37

3A - A = (32 + 33 + 34 + ...  + 37) - (3 + 32 + 33 + ... + 36)

2A = 37 - 3

A = \(\dfrac{3^7-3}{2}\)

b)

Từ câu a) suy ra

2A - 3 = 3x

37 - 3 - 3 = 3x (rõ ràng đề sai)

c)

A = 3 + 32 + 33 + ... + 36

A = 3(1 + 31) + 33(1 + 31) + 35(1 + 31)

A = (3 + 33 + 35).4

Do đó A ⋮ 4

8 tháng 10 2017

a) A= 3+3 ^2+...+3 ^100

=> 3A = 3^ 2+3^ 3+...+3 ^101

=> 3A-A= 3 ^2+3 ^3+...+3 ^101 - ( 3+3 ^2+...+3 ^100 )

=> 2A = 3 ^101 -3

=> A= 3^101 -3/2

c) 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101

=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )

=> 2A = 3^101 - 3 => 2A + 3 = 3^101

vậy n = 101 

8 tháng 10 2017

25=x-4^3=251

trả lời nhanh giúp em với

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3

6 tháng 10 2015

a) A = 3 + 32 + ... + 3100

A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )

A = 3( 1 + 2 ) + 33( 1 + 2 ) + ... + 399( 1 + 2 )

A = 3( 1 + 33 + ... 399 ) ( 1 ).

b) Từ ( 1 ) ta có A chia hết cho 4 và 9.

c) 3A = 32 + 33 + ... + 3100 + 3101

3A - A = ( 32 + 33 + ... + 3100 + 3101 ) - ( 3 + 32 + ... + 3100 )

2A = 3101 - 3 \(\Rightarrow\)2A + 3 = 3101

\(\Rightarrow\)n = 101.

 

 

6 tháng 10 2015

a) A= 3+32+...+3100

=> 3A = 32+33+...+3101

=> 3A-A=  32+33+...+3101 - ( 3+32+...+3100 ) 

=> 2A = 3101-3

=> A= \(\frac{3^{101}-3}{2}\)

b) Trong câu hỏi tương tự nhé

c) Theo câu a 

A = \(\frac{3^{101}-3}{2}\)

=> 2A =3101-3

=> 2A+3=3101

=> n=101

4 tháng 12 2015

d) Ta có A chia hết cho 3 

=> 2A chia hết cho 3 mà 3 cũng chia hết cho 3

=> 2A+3 chia hết cho A

1 tháng 10 2015

trả lời câu c nha

A=3+3^2 +3^+...+3^99+3^100

3A=3^2+3^3+...+3^100+3^101

3A-A=2A=3^101-3

Do đó 2A+3=3^101.Theo đề bài,2A+3=3^x

Vậy x=101

 

^ là mụ nha

 

24 tháng 10 2023

ko bt lm

 

1: A(x)=5x^4+4x^4+x^2+x^2-x+3

=9x^4+2x^2-x+3

B(x)=-8x^4-x^3-2x^2+3

2: A(x)+B(x)

=9x^4+2x^2-x+3-8x^4-x^3-2x^2+3

=x^4-x^3-x+6

A(x)-B(x)

=9x^4+2x^2-x+3+8x^4+x^3+2x^2-3

=17x^4+x^3+4x^2-x

bậc của A(x)-B(x) là 4

3: P(x)=x^4-x^3-x+6-x^4+x^3=-x+6

P(6)=-6+6=0

=>x=6 là nghiệm của P(x)

15 tháng 8 2021

a, 

A = 2 + 22 + 23 +...+210

A = (2 + 22 ) + (23 +24 ) + ...+ (29 + 210 )

A = 2 ( 1+2 ) + 23(1+2 ) + ...+ 29(1+2)

A = 2 .3 + 23 .3 + ...+29.3

A = 3 ( 2+ 23 + ...+ 29 ) \(⋮\) 3 3

Vậy A \(⋮\) 3

b, A = 2 + 22 + 23 +...+210

A = ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 )

A =  2 ( 1+2+22 + 23 + 24 ) + 26(1+2+22 + 23 + 24)

A = 2 . 31 + 26 .31

A = 31(2+26 ) \(⋮\) 31

vậy A \(⋮\) 31

d , A = 2 + 22 + 23 +...+210