Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) \({x^2} - 2x - 3 > 0\) khi và chỉ khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)
b) \({x^2} - 2x - 3 < 0\) khi và chỉ khi \(x \in \left[ { - 1;3} \right]\)
Phương trình \({x^2} - 2x - 3 = 0\) có 2 nghiệm phân biệt \({x_1} = - 1,{x_2} = 3\)
Có \(a = 1 > 0\) nên
\(f\left( x \right) = {x^2} - 2x - 3 > 0\) khi và chỉ khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)
=> Phát biểu a) đúng.
\(f\left( x \right) = {x^2} - 2x - 3 < 0\) khi và chỉ khi \(x \in \left( { - 1;3} \right)\)
=> Phát biểu b) sai vì khi x=-1 hoặc x=3 thì \({x^2} - 2x - 3 = 0\) (không nhỏ hơn 0).