K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2020

A B C D

Vì tam giác ABC cân tại A  suy ra AB = AC (T/c tam giác cân)

Mà AC = AD (GT)

suy ra AB = AD suy ra tam giác ABD cân tại A

b) Vì AB = AC = AD = 1/2AC nên AC = 2AB suy ra tam giác BDC vuông tại D

suy ra góc DBC = 90 độ

c) Để tam giác ABD đều suy ra góc ACB = 60 độ

28 tháng 4 2020

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết

25 tháng 12 2017

A C B D E

a) Xét tam giác vuông ABC, ta có: \(\widehat{ACB}=90^o-\widehat{ABC}=90^o-60^o=30^o\)

b) Ta thấy góc \(\widehat{BAD}\) và \(\widehat{BAC}\) là hai góc kề bù, mà \(\widehat{BAC}=90^o\Rightarrow\widehat{BAD}=90^o\)

Xét hai tam giác vuông ABD và ABC có:

BA chung

DA = CA (gt)

\(\Rightarrow\Delta ABD=\Delta ABC\)   (Hai cạnh góc vuông)

c) Do BE là tia phân giác góc ABC nên \(\widehat{ABE}=\widehat{CBE}=30^o\)

Do \(\Delta ABD=\Delta ABC\Rightarrow\hept{\begin{cases}DB=CB\\\widehat{DBA}=\widehat{CBA}=60^o\end{cases}}\)

\(\Rightarrow\widehat{DBE}=\widehat{DBA}+\widehat{ABE}=60^o+30^o=90^o\)

Do BA và CE cùng vuông góc với AC nên BC // CE. Vậy thì \(\widehat{BEC}=\widehat{ABE}=30^o\)

Xét tam giác BCE có: \(\widehat{BEC}=\widehat{CBE}=30^o\) nên nó là tam giác cân. Hay BC = CE

Từ đó ta có : DB = EC

Xét tam giác vuông DBE và ECD có:

DB = EC

DE chung

\(\Rightarrow\Delta DBE=\Delta ECD\)  (Cạnh huyền cạnh góc vuông)

\(\Rightarrow BE=CD\)

Mà CD = CA + AD = 2AC

Vậy nên BE = 2AC.

5 tháng 12 2017

Làm ơn gợi ý lời giải câu C. Cảm ơn 

17 tháng 10 2017

a) Ta có tam giác đó vuông tại A nên góc CAB = 90 độ

Mà theo định lý , ta có tổng của ba góc của tam giác luôn luôn bằng 180 độ 

=> Góc ACB + góc CAB + góc ABC = 180 độ

<=> Góc ACB + 90 độ + 60 độ = 180 độ

<=> Góc ACB = 180 độ - 60 độ - 90 độ

<=> Góc ACB = 30 độ

b) Ta có diện tích tam giác bằng đáy x chiều cao : 2

 Mà đáy AD = AC; cả hai hình cùng có chung chiều cao là từ điểm B kéo xuống vuông góc với CD

=> ABC = ABD

7 tháng 12 2017


Ta chứng minh trong một tam giác vuông có một góc bằng \(60^o\) thì cạnh huyền bằng 2 lần cạnh góc vuông đối diện với góc \(30^o\).
H M N P 60 0
Xét tam giác vuông MHP có \(\widehat{H}=90^o,\widehat{P}=60^o\).
Trên tia đối của tia HP lấy điểm N sao cho NH = HP.
Tam giác MNP cân tại M có \(\widehat{P}=60^o\) nên là tam giác đều.
Suy ra \(NP=2HP=MP\). Vì vậy MP = 2HP (đpcm).
C A B E I
Gọi giao điểm của CA và BE là I.
Ta tính được các góc \(\widehat{EIC}=60^o,\widehat{AIB}=60^o\).
Các tam giác vuông CIE và IAB có các góc \(\widehat{EIC}=\widehat{AIB}=60^o\), suy ra \(2CI=EI,BI=2AI\).
Suy ra \(BE=EI+IB=2CI+2IA=2CA\) hay \(AC=\frac{1}{2}BE\).

17 tháng 10 2017

a) Ta có tam giác đó vuông tại A nên góc CAB = 90 độ

Mà theo định lý , ta có tổng của ba góc của tam giác luôn luôn bằng 180 độ 

=> Góc ACB + góc CAB + góc ABC = 180 độ

<=> Góc ACB + 90 độ + 60 độ = 180 độ

<=> Góc ACB = 180 độ - 60 độ - 90 độ

<=> Góc ACB = 30 độ

b) Ta có diện tích tam giác bằng đáy x chiều cao : 2

 Mà đáy AD = AC; cả hai hình cùng có chung chiều cao là từ điểm B kéo xuống vuông góc với CD

=> ABC = ABD

Câu c ngày mai mình giải nhé

4 tháng 12 2017

a) Ta có tam giác đó vuông tại A nên góc CAB = 90 độ
Mà theo định lý , ta có tổng của ba góc của tam giác luôn luôn bằng 180 độ
=> Góc ACB + góc CAB + góc ABC = 180 độ
<=> Góc ACB + 90 độ + 60 độ = 180 độ
<=> Góc ACB = 180 độ - 60 độ - 90 độ
<=> Góc ACB = 30 độ
b) Ta có diện tích tam giác bằng đáy x chiều cao : 2
Mà đáy AD = AC; cả hai hình cùng có chung chiều cao là từ điểm B kéo xuống vuông góc với CD
=> ABC = ABD

chúc cậu hok tốt @_@

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)