Bài 13. Cho ABC cân tại A. Trên cạnh AB lấy điểm D và trên cạnh AC lấy điểm E sao cho BD = CE a) Chứng minh CD = BE
a) Gọi I là giao điểm của CD và BE. Chứng minh A1 là đường trung trực của BC b) Chứng minh BC //DE c) Trên tia đối của tia BA lấy điểm F sao cho BF = BD , EF cắt BC tại K. Chứng minh K là trung điểm của EF.Em đang cần gấp. Cảm ơn nhiều ạHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
DO đó: ΔABE=ΔACD
Suy ra: BE=CD
b: XétΔIBC có \(\widehat{IBC}=\widehat{ICB}\)
nên ΔICB cân tại I
c: Xét ΔABC có AD/DB=AE/EC
nên DE//BC
a, Ta có : \(AD=AE\left(gt\right)\)
→ ΔADE là tam giác cân ở A
\(\Rightarrow\widehat{ADE}=\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-40}{2}=70^0\)
Mà ΔABC cũng là tam giác cân
\(\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}=70^0\)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\left(=70^0\right)\)
mà 2 góc này ở vị trí so le trong
\(\Rightarrow DE//BC\)
b, Xét ΔABE và ΔACD có :
\(AB=AC\left(\Delta ABC\cdot cân\right)\)
\(\widehat{A}:chung\)
\(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c-g-c\right)\)
c, Nối dài đoạn AI xuống BC, ta được đường phân giác AK của tam giác ABC.
Mà ΔABC cân ở A
→ AK là đường trung tuyến của tam giác ABC
→ AI cũng là đường trung tuyến của tam giác ABC
a: Kẻ DK//AC
=>góc DKB=góc ACB
=>góc DKB=góc DBK
=>DB=DK=CE
Xét tứ giác DKEC có
DK//EC
DK=EC
=>DKEC là hình bình hành
=>DE cắt KC tại trung điểm của mỗi đường
=>I là trung điểm của DE
b: O nằm trên trung trực của BC và DE
=>OB=OC; OD=OE
Xét ΔOBD và ΔOCE có
OB=OC
OD=OE
BD=CE
=>ΔOBD=ΔOCE
a) Xét \(\Delta AEB\) và \(\Delta ADC:\)
AE = AD (gt).
\(\widehat{A}chung.\)
AB = AC \((\Delta ABC\) cân tại A).
\(\Rightarrow\Delta AEB=\Delta ADC\left(c-g-c\right).\)
\(\Rightarrow BE=CD.\)
b) \(\Rightarrow\Delta AEB=\Delta ADC\left(cmt\right).\)
\(\Rightarrow\widehat{ABE}=\widehat{ACD}.\)
Ta có: \(\widehat{BDK}=180^o-\widehat{ADC};\widehat{CEK}=180^o-\widehat{AEB}.\)
Mà \(\widehat{AEB}=\widehat{ADC}\left(\Delta AEB=\Delta ADC\right).\)
\(\Rightarrow\widehat{BDK}=\widehat{CEK}.\)
Xét \(\Delta KBD\) và \(\Delta KCE:\)
\(\widehat{DBK}=\widehat{ECK}\left(\widehat{ABE}=\widehat{ACD}.\right).\)
BD = CE (cmt).
\(\widehat{BDK}=\widehat{CEK}\left(cmt\right).\)
\(\Rightarrow\Delta KBD=\Delta KCE\left(g-c-g\right).\)
c) Xét \(\Delta AKB\) và \(\Delta AKC:\)
\(AKchung.\)
AB = AC (\(\Delta ABC\) cân tại A).
KB = KC \(\left(\Delta KBD=\Delta KCE\right).\)
\(\Rightarrow\Delta AKB=\Delta AKC\left(c-c-c\right).\\ \Rightarrow\widehat{KAB}=\widehat{KAC}.\)
\(\Rightarrow\) AK là phân giác của \(\widehat{A}.\)
Xét \(\Delta ABC\) cân tại A:
AK là phân giác của \(\widehat{A}\left(cmt\right).\)
\(\Rightarrow\) AK là đường cao.
\(\Rightarrow AK\perp BC.\)
a: Xét ΔABE và ΔACDcó
AB=AC
góc BAE chung
AE=AD
=>ΔABE=ΔACD
=>BE=CD
b: ΔABE=ΔACD
=>góc ABE=góc ACD
c: góc ABE+góc KBC=góc ABC
góc ACD+góc KCB=góc ACB
mà góc ABE=góc ACD và góc ABC=góc ACB
nên góc KBC=góc KCB
=>KB=KC
d: AB=AC
KB=KC
=>AK là trung trực của BC
=>A,K,I thẳng hàng
a/
Xét tg BCD và tg CBD có
BD=CE (gt)
\(\widehat{ABC}=\widehat{ACB}\) (góc ở đáy tg cân ABC)
BC chung
=> tg BCD = tg CBD (c.g.c) => CD=BE (đpcm)
b/
tg BCD = tg CBD (cmt) \(\Rightarrow\widehat{IBC}=\widehat{ICB}\)
=> tg IBC cân tại I => IB=IC
Xét tg ABI và tg ACI có
IB=IC (cmt)
AI chung
AB=AC (cạnh bên tg cân ABC)
=> tg ABI = tg ACI (c.c.c) \(\Rightarrow\widehat{BAI}=\widehat{CAI}\)
=> AI là phân giác \(\widehat{A}\)
=> AI là trung trực của BC (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung trực)
c/
Ta có
AD=AB-BD
AE=AC-CE
Mà AB=AC; BD=CE
=> AD=AE
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\) => DE//BC (Talet đảo trong tam giác)
d/
Từ E đựng đường thẳng // với AB cắt BC tại G
ta có
\(\widehat{EGC}=\widehat{ABC}\) (góc đồng vị)
Mà \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{EGC}=\widehat{ACB}\) => tg EGC cân tại E => GE=CE (cạnh bên tg cân)
Mà BD=CE (gt)
=> GE=BD mà BD=BF => GE=BF
Ta có
GE//AB => GE//BF
=> BEGF là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hình bình hành)
=> KE=KF (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> K là trung điểm của EF