Trong Hình 8, I là giao điểm của ba đường phân giác của tam giác ABC.
a) Cho biết IM = 6 (Hình 8a). Tính IK và IN.
b) Cho biết IN = x + 3, IM = 2x – 3 (Hình 8b). Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=MB=MC=\dfrac{BC}{2}\)
Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
nên AMCK là hình bình hành
Hình bình hành AMCK có MA=MC
nên AMCK là hình thoi
b: AMCK là hình thoi
=>AK//MC và AK=MC
AK//MC
M\(\in\)BC
Do đó: AK//MB
AK=MC
MC=MB
Do đó: AK=MB
Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
c; Để hình thoi AMCK trở thành hình vuông thì \(\widehat{KCM}=90^0\)
AMCK là hình thoi
=>CA là phân giác của \(\widehat{KCM}\)
=>\(\widehat{ACM}=\dfrac{1}{2}\cdot\widehat{KCM}=45^0\)
=>\(\widehat{ACB}=45^0\)
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(MA=MC=MB=\dfrac{BC}{2}\)
Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
=>AMCK là hình bình hành
Hình bình hành AMCK có MA=MC
nên AMCK là hình thoi
b: AMCK là hình thoi
=>AK//MC và AK=MC
AK=MC
MB=MC
Do đó: AK=MB
AK//MC
M\(\in\)BC
Do đó: AK//MB
Xét tứ giác ABMK có
AK//BM
AK=BM
Do đó: ABMK là hình bình hành
=>AM cắt BK tại trung điểm của mỗi đường
mà O là trung điểm của AM
nên O là trung điểm của BK
=>B,O,K thẳng hàng
a: Xét tứ giác AMIN có \(\widehat{AMI}=\widehat{ANI}=\widehat{NAM}=90^0\)
nên AMIN là hình chữ nhật
b: IN=3cm
nên AM=3cm
IM=4cm
nên AN=4cm
Xét ΔABC có
I là trung điểm của BC
IM//AC
Do đó: M là trung điểm của AB
=>AB=6cm
Xét ΔABC có
I là trung điểm của BC
IN//AB
Do đó: N là trung điểm của AC
hay AC=8cm
\(S_{ABC}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
c: Xét tứ giác ADCI có
N là trung điểm của AC
N là trung điểm của DI
Do đó: ADCI là hình bình hành
mà IA=IC
nên ADCI là hình thoi
a: Xét ΔABC có
M,I lần lượt là trung điểm của CB,CA
=>MI là đường trung bình của ΔABC
=>MI//AB và MI=AB/2
MI//AB
\(I\in MK\)
Do đó: MK//AB
\(MI=\dfrac{AB}{2}\)
\(MI=\dfrac{MK}{2}\)
Do đó: AB=MK
Xét tứ giác ABMK có
MK//AB
MK=AB
Do đó: ABMK là hình bình hành
b: Để hình bình hành AKMB là hình thoi thì MB=BA
ΔABC vuông tại A có AM là đường trung tuyến
nên \(AM=MB=MC=\dfrac{BC}{2}\)
=>AM=MB=BA
=>ΔMAB đều
=>\(\widehat{ABC}=60^0\)
a) Theo đề bài ta có AI, BI, CI là các phân giác của tam giác ABC
Mà I là giao điểm của 3 đường phân giác trong tam giác ABC
\( \Rightarrow \)IK = IN = IM = 6cm (Định lí về sự đồng quy của 3 đường phân giác trong tam giác)
b) Vì I là giao điểm của 3 đường phân giác trong tam giác ABC
\( \Rightarrow \) IK = IN = IM
\( \Rightarrow \) x + 3 = 2x – 3
\( \Rightarrow \) 3 + 3 = 2x – x
\( \Rightarrow \) x = 6