phân tích đa thức thành nhân tử :
a ) a^3 x ( b - c ) + b^3 x ( c - a ) + c^3 x ( a - b )
b ) ( a + b ) x ( a^2 - b^2 ) + ( b + c ) x ( b^2 - c^2 ) + ( c + a ) x ( c^2 - a^2 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
\(D=a^3\left(b-c\right)+\left[b^3\left(c-a\right)+c^3\left(a-b\right)\right]\)
\(D=a^3\left(b-c\right)\left(b^3c-ab^3+ac^3-bc^3\right)\)
\(D=a^3\left(b-c\right)\left[\left(b^3c-bc^3\right)-\left(ab^3-ac^3\right)\right]\)
\(D=a^3\left(b-c\right)\left[bc\left(b^2-c^2\right)-a\left(b^3-c^3\right)\right]\)
\(D=a^3\left(b-c\right)\left[bc\left(b-c\right)\left(b+c\right)-a\left(b-c\right)\left(b^2+bc+c^2\right)\right]\)
\(D=\left(b-c\right)\left[a^3+bc\left(b+c\right)-a\left(b^2+bc+c^2\right)\right]\)
\(D=\left(b-c\right)\left(a^3+b^2c+bc^2-ab^2-abc-ac^2\right)\)
\(D=\left(b-c\right)\left[\left(b^2c-ab^2\right)+\left(bc^2-abc\right)-\left(ac^2-a^3\right)\right]\)
\(D=\left(b-c\right)\left[b^2\left(c-a\right)+bc\left(c-a\right)-a\left(c^2-a^2\right)\right]\)
\(D=\left(b-c\right)\left[b^2\left(c-a\right)+bc\left(c-a\right)-a\left(c-a\right)\left(c+a\right)\right]\)
\(D=\left(b-c\right)\left(c-a\right)\left[b^2+bc-a\left(c+a\right)\right]\)
\(D=\left(b-c\right)\left(c-a\right)\left(b^2+bc-ac-a^2\right)\)
\(D=\left(b-c\right)\left(c-a\right)\left[\left(bc-ac\right)+\left(b^2-a^2\right)\right]\)
\(D=\left(b-c\right)\left(c-a\right)\left[c\left(b-a\right)+\left(b-a\right)\left(b+a\right)\right]\)
\(D=\left(b-c\right)\left(c-a\right)\left(b-a\right)\left(c+b+a\right)\)
\(D=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)
Chúc bạn học tốt.
\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b+b-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b\right)-ca\left(b-c\right)\)
\(=\left(a-b\right)\left(ab-ca\right)+\left(b-c\right)\left(bc-ca\right)\)
\(=\left(a-b\right)a\left(b-c\right)+\left(b-c\right)c\left(b-a\right)\)
\(=\left(a-b\right)a\left(b-c\right)-\left(b-c\right)c\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
mình làm vội, có chỗ nào sai bạn thông cảm nha
a) \(\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)
b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
c) \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
1)(x^2+3x+1)(x^2+3x+2)-6
Đặt t = x2 + 3x + 1
Khi đó PT có dạng:
t.(t + 1) - 6
= t2 + t - 6
= t2 - 2t - 3t - 6
= t.(t - 2) + 3.(t - 2)
= (t + 3).(t - 2)
= (x2 + 3x + 1 + 3).(x2 + 3x + 1 - 2)
= (x2 + 3x + 4).(x2 + 3x - 1)
\(1\hept{\begin{cases}\left(x^2+3x+2-1\right)\left(x^2+2x+2\right)-6\\\left(t-1\right)\left(t\right)-6\\t^2-t-6\end{cases}}.\) " đặt x^2+3x+2 = t
\(\hept{\begin{cases}t^2-\frac{2t.1}{2}+\frac{1}{4}-\left(\frac{24+1}{4}\right)\\\left(t-\frac{1}{2}\right)^2-\frac{25}{4}\\\left(t-\frac{1}{2}\right)^2-\frac{25}{4}\end{cases}}\)
\(\hept{\begin{cases}\left(t-\frac{1}{2}-\frac{5}{2}\right)\left(t-\frac{1}{2}+\frac{5}{2}\right)\\\left(t-\frac{7}{2}\right)\left(t+\frac{4}{2}\right)\\\left(t-\frac{7}{2}\right)\left(t+\frac{4}{2}\right)\end{cases}}\)
2) \(\hept{\begin{cases}\left\{\left(x+1\right)\left(x+7\right)\right\}\left\{\left(x+5\right)\left(x+3\right)\right\}+15\\\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\\t\left(t+8\right)+15\end{cases}}\)
\(\hept{\begin{cases}t^2+8t+15\\\left(t^2+8t+16\right)-1\\\left(t+4\right)^2-1\end{cases}}\Leftrightarrow\left(t+5\right)\left(t+4\right)\)
\(\hept{\begin{cases}a^3\left(b-c\right)+b^3\left(c-a+b-b\right)+c^3\left(a-b\right)\\a^3\left(b-c\right)-b^3\left(-c+a-b+b\right)+c^3\left(a-b\right)\\a^3\left(b-c\right)-b^3\left(a-b\right)-b^3\left(b-c\right)+c^3\left(a-b\right)\end{cases}\Leftrightarrow\hept{\begin{cases}\left(b-c\right)\left(a^3-b^3\right)-\left(a-b\right)\left(b^3-c^3\right)\\\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(b-c\right)\left(b^2+ab+c^2\right)\\\left(a-b\right)\left(b-c\right)\left(a^2+2ab+2b^2+c^2\right)\end{cases}}}\)
a) \(=x^2-2x-4x+8\)
\(=x\left(x-2\right)-4\left(x-2\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
c) \(=x^3-x-6x-6\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1-6\right)\)
\(=x\left(x+1\right)\left(x-7\right)\)