Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 yêu cầu gì em?
Bài 2:
\(a,x\left(x-1\right)+5\left(x-1\right)=\left(x+5\right)\left(x-1\right)\\ b,3x\left(x+1\right)+3\left(x+1\right)=\left(3x+3\right)\left(x+1\right)=3\left(x+1\right)\left(x+1\right)=3\left(x+1\right)^2\\ c,x\left(x-3\right)+xy\left(x-3\right)=\left(x+xy\right)\left(x-3\right)=x\left(y+1\right)\left(x-3\right)\\ d,2x\left(x-2\right)-6\left(x-2\right)=\left(2x-6\right)\left(x-2\right)=2\left(x-3\right)\left(x-2\right)\)
Bài 1:
a) \(3xy+6y\)
\(=3y\left(x+2\right)\)
b) \(3x^2+9x\)
\(=3x\left(x+3\right)\)
c) \(6x-9y^2\)
\(=3\left(2x-3y^2\right)\)
d) \(10xy^2-6x^2y\)
\(=2xy\left(5y-3x\right)\)
Bài 2:
a) \(x\left(x-1\right)+5\left(x-1\right)\)
\(=\left(x-1\right)\left(x+5\right)\)
b) \(3x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(3x+3\right)\)
\(=3\left(x+1\right)\left(x+1\right)\)
\(=3\left(x+1\right)^2\)
c) \(x\left(x-3\right)+xy\left(x-3\right)\)
\(=\left(x+xy\right)\left(x-3\right)\)
\(=x\left(1+y\right)\left(x-3\right)\)
d) \(2x\left(x-2\right)-6\left(x-2\right)\)
\(=\left(2x-6\right)\left(x-2\right)\)
\(=2\left(x-3\right)\left(x-2\right)\)
a) \(4x\left(a-b\right)+6xy\left(b-a\right)\)
\(=4x\left(a-b\right)-6xy\left(a-b\right)\)
\(=\left(4x-6xy\right)\left(a-b\right)\)
\(=2x\left(2-3y\right)\left(a-b\right)\)
phân tích đa thức thành nhân tử
a/4x-3x-1
b/x^7+x^5+1
c/x^3-x^2-4
d/3x^3-7x^2+17x-5
e/x^2+2xy+y^2-x-y-12
Bài 2:
c: \(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
a) \(x^3y^3+125=\left(xy\right)^3+5^3=\left(xy+5\right)\left(x^2y^2-5xy+25\right)\)
b) \(8x^3+y^3-6xy\left(2x+y\right)=\left(8x^3+y^3\right)-6xy\left(2x+y\right)=[\left(2x\right)^3+y^3]-6xy\left(2x+y\right)\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-6xy\left(2x+y\right)=\left(2x+y\right)\left(4x^2-2xy+y^2-6xy\right)\)
\(=\left(2x+y\right)\left(4x^2-8xy+y^2\right)\)
c) \(\left(3x+2\right)^2-2\left(x-1\right)\left(3x+2\right)+\left(x-1\right)^2\)
\(=[\left(3x+2\right)-\left(x-1\right)]^2=\left(3x+2-x+1\right)^2=\left(2x+3\right)^2=\left(2x+3\right)\left(2x+3\right)\)
1. C. \(16x^2\left(x-y\right)\)\(-10y\left(y-1\right)\)\(=-2\left(y-x\right)\)\(\left(8x^2+5y\right)\)
2. C. \(\left(x-y\right)\left(x-y-3\right)\)
3. D. \(\left(x-2\right)\left(x+1\right)\)
4. C. \(y\left(x-2\right)\)\(5x\left(x-3\right)\)
5. D. \(3\left(x-2y\right)\)
1. Trong các kết quả sau kết quả nào sai
A. -17x^3y-34x^2y^2+51xy^3=17xy(x^2+2xy-3y^2)
B. x(y-1) +3(y-1)= -(1-y)(x+3)
C. 16x^2(x-y)-10y(y-1)=-2(y-x)(8x^2+5y)
2. Đa thức (x-y)^2+3(y-x) được phân tích thành nhân tử là:
A. (x+y)(x-y+3)
B. (x-y)(2x-2y+3)
C. (x-y)(x-y-3)
D. Cả 3 câu đều sai
3. Kết quả phân tích đa thức x(x-2)+(x-2) thành nhân tử
A. (x-2)x
B. (x-2)^2.x
C. x(2x-4)
D. (x-2)(x+1)
4. Kết quả phân tích 5x^2(xy-2y)-15x(xy-2y) thành nhân tử
A. (xy-2y)(5x^2-15x^2)
B. y(x-2)(5x^2-15x^2)
C. y(x-2)5x(x-3)
D. (xy-2y)5x(x-3)
5. Kết quả phân tích đa thức 3x-6y thành nhân tử là
A. 3(x-6y)
B. 3(3x-y)
C. 3(3x-2y)
D. 3(x-2y)
1)(x^2+3x+1)(x^2+3x+2)-6
Đặt t = x2 + 3x + 1
Khi đó PT có dạng:
t.(t + 1) - 6
= t2 + t - 6
= t2 - 2t - 3t - 6
= t.(t - 2) + 3.(t - 2)
= (t + 3).(t - 2)
= (x2 + 3x + 1 + 3).(x2 + 3x + 1 - 2)
= (x2 + 3x + 4).(x2 + 3x - 1)
\(1\hept{\begin{cases}\left(x^2+3x+2-1\right)\left(x^2+2x+2\right)-6\\\left(t-1\right)\left(t\right)-6\\t^2-t-6\end{cases}}.\) " đặt x^2+3x+2 = t
\(\hept{\begin{cases}t^2-\frac{2t.1}{2}+\frac{1}{4}-\left(\frac{24+1}{4}\right)\\\left(t-\frac{1}{2}\right)^2-\frac{25}{4}\\\left(t-\frac{1}{2}\right)^2-\frac{25}{4}\end{cases}}\)
\(\hept{\begin{cases}\left(t-\frac{1}{2}-\frac{5}{2}\right)\left(t-\frac{1}{2}+\frac{5}{2}\right)\\\left(t-\frac{7}{2}\right)\left(t+\frac{4}{2}\right)\\\left(t-\frac{7}{2}\right)\left(t+\frac{4}{2}\right)\end{cases}}\)
2) \(\hept{\begin{cases}\left\{\left(x+1\right)\left(x+7\right)\right\}\left\{\left(x+5\right)\left(x+3\right)\right\}+15\\\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\\t\left(t+8\right)+15\end{cases}}\)
\(\hept{\begin{cases}t^2+8t+15\\\left(t^2+8t+16\right)-1\\\left(t+4\right)^2-1\end{cases}}\Leftrightarrow\left(t+5\right)\left(t+4\right)\)
\(\hept{\begin{cases}a^3\left(b-c\right)+b^3\left(c-a+b-b\right)+c^3\left(a-b\right)\\a^3\left(b-c\right)-b^3\left(-c+a-b+b\right)+c^3\left(a-b\right)\\a^3\left(b-c\right)-b^3\left(a-b\right)-b^3\left(b-c\right)+c^3\left(a-b\right)\end{cases}\Leftrightarrow\hept{\begin{cases}\left(b-c\right)\left(a^3-b^3\right)-\left(a-b\right)\left(b^3-c^3\right)\\\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(b-c\right)\left(b^2+ab+c^2\right)\\\left(a-b\right)\left(b-c\right)\left(a^2+2ab+2b^2+c^2\right)\end{cases}}}\)