cho a/b=c/d, chung minh:
a2-b2/c2-d2=ab/cd
Thanks nhiu!!!!!!!! ( vs dieu kien phai giup mk cai da)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n khác 0 ;n>3
b ) B không phải là số nguyên nếu xét các trường hợp trên
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)
Lời giải:
Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$
$=(ad+bc)t$
Mà:
$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$
Tương tự: $t> ac+bd$
Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:
$ab+cd> ad+bc, ac+bd> ad+bc$
Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý
Do đó ta có đpcm.
a) Xét tứ giác AMCD có
I là trung điểm của đường chéo AC(gt)
I là trung điểm của đường chéo DM(do D và M đối xứng với nhau qua I)
Do đó: AMCD là hình bình hành(dấu hiệu nhận biết hình bình hành)
Ta có: AM là đường trung tuyến ứng với cạnh đáy BC của \(\Delta\)ABC cân tại A(gt)
nên AM cũng là đường cao ứng với cạnh BC(định lí tam giác cân)
\(\Rightarrow\)\(\widehat{AMC}=90^0\)
Hình bình hành AMCD có \(\widehat{AMC}=90^0\)(cmt)
nên AMCD là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)
b)Ta có: AM là đường trung tuyến ứng với cạnh đáy BC của \(\Delta\)ABC cân tại A(gt)
nên M là trung điểm của BC
Để hình chữ nhật AMCD là hình vuông thì AM=MC
mà \(MC=\frac{BC}{2}\)(do M là trung điểm của BC)
nên \(AM=\frac{BC}{2}\)
Xét \(\Delta\)ABC có
AM là đường trung tuyến ứng với cạnh BC(gt)
\(AM=\frac{BC}{2}\)(cmt)
Do đó: \(\Delta\)ABC vuông tại A(định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
\(\Rightarrow\)\(\widehat{BAC}=90^0\)
Vậy: Khi \(\Delta\)ABC vuông tại A có thêm điều kiện \(\widehat{BAC}=90^0\) thì hình chữ nhật AMCD là hình vuông
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\)\(\Rightarrow\frac{a^2}{b^2}-1=\frac{c^2}{d^2}-1\)
\(\Leftrightarrow\frac{a^2-b^2}{b^2}=\frac{c^2-d^2}{d^2}\)
\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{b^2}{d^2}\left(1\right)\)
Ta lại có :\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{ab}{b^2}=\frac{cd}{d^2}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)