K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

Theo đề bài, ta có:\(\frac{27^x}{3^{2x}}-y=243\)

=> \(\frac{\left(3^3\right)^x}{3^{2x}}-y=243\)

=> \(\frac{3^{3x}}{3^{2x}}-y=243\)

=> \(3^{3x-2x}-y=243\)

=> \(3^x-y=243\)

=> \(3^x=243+y\)

Nếu y = 0 thì \(3^x=243\)=> \(x=5\).

Nếu y > 0 thì \(y=486\)=> \(3^x=729\)=> \(x=6\).

Các cặp (x, y) thoả mãn điều kiện là: (5; 0), (6; 486).

18 tháng 7 2017

bạn Huy Hoàng ơi, 27x /32x - y là 1 phân số, y ở dưới mẫu số chứ ko phải như bạn nghĩ

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

a) 

$3^{2x+1}.7^y=9.21^x=3^2.(3.7)^x=3^{2+x}.7^x$

Vì $x,y$ là số tự nhiên nên suy ra $2x+1=2+x$ và $y=x$

$\Rightarrow x=y=1$

b) \(\frac{27^x}{3^{2x-y}}=\frac{3^{3x}}{3^{2x-y}}=3^{x+y}=243=3^5\Rightarrow x+y=5(1)\)

\(\frac{25^x}{5^{x+y}}=\frac{5^{2x}}{5^{x+y}}=5^{x-y}=125=5^3\Rightarrow x-y=3\) $(2)$

Từ $(1);(2)\Rightarrow x=4; y=1$

 

2 tháng 10 2018

      \(27x^3-27x^2+18x-4\)

\(=27x^3-9x^2-18x^2+6x+12x-4\)

\(=9x\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)

\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)

       \(x^2+2xy+y^2-x-y-12\)

\(=\left(x+y\right)^2-\left(x+y\right)-12\)

\(=\left(x+y\right)^2-4\left(x+y\right)+3\left(x+y\right)-12\)

\(=\left(x+y\right)\left(x+y-4\right)+3\left(x+y-4\right)=\left(x+y+3\right)\left(x+y-4\right)\)  \(P=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

   \(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\) (nhóm 2 cái đầu với cuối lại với nhau, 2 cái giữa vào 1 nhóm)

Đặt \(x^2+7x+11=a\)

Ta có: \(P=\left(a-1\right)\left(a+1\right)-24\)

\(=a^2-25=\left(a-5\right)\left(a+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

d,   \(4x^4-32x^2+1\)

\(=4x^4+4x^2+1-36x^2\)

\(=\left(2x+1\right)^2-\left(6x\right)^2=\left(2x^2-6x+1\right)\left(2x^2+6x+1\right)\)

22 tháng 10 2018

1. a) \(8x^3-32x=8x\left(x^2-4\right)=8x\left(x-4\right)\left(x+4\right)\)

b) \(y^3+64+\left(y+4\right)\left(y-16\right)=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)

\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)=\left(y+4\right)\left(y^2-4y+16+y-16\right)\)

\(=\left(y-4\right)\left(y^2-3y\right)=\left(y-4\right)y\left(y-3\right)\)

2) a)

\(4x^3-9x=0\)

\(\Leftrightarrow x\left(4x^2-9\right)=0\)

\(\Leftrightarrow x\left(2x+3\right)\left(2x-3\right)=0\)

<=> x=0 hoặc 2x+3=0 hoặc 2x-3=0

<=> x=0 hoặc x=-3/2 hoặc x=3/2

b) \(A=x^3-9x^2+27x-27=x^3-3.x^2.3+3.x.3^2-3^3=\left(x-3\right)^3\)

Tại x=203

A=(203-3)3=2003

22 tháng 10 2018

Bài 1 :

a) \(8x^3-32x\)

\(=8x\left(x^2-4\right)\)

\(=8x\left(x-2\right)\left(x+2\right)\)

b) \(y^3+64+\left(y+4\right)\left(y-16\right)\)

\(=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)

\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)\)

\(=\left(y+4\right)\left(y^2-4x+16+y-16\right)\)

\(=\left(y+4\right)\left(y^2+y-4x\right)\)

Bài 2 :

a) \(4x^3-9x=0\)

\(x\left(4x^2-9\right)=0\)

\(x\left[\left(2x\right)^2-3^2\right]=0\)

\(x\left(2x-3\right)\left(2x+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\2x-3=0\\2x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\\x=\frac{-3}{2}\end{cases}}}\)

P.s: ở trên dùng ngoặc vuông nhé

b) \(A=x^3-9x^2+27x-27\)

\(A=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)

\(A=\left(x-3\right)^3\)

Thay x = 203 vào biểu thức ta có :

\(A=\left(203-3\right)^3\)

\(A=200^3\)

\(A=8000000\)

17 tháng 2 2020

Ta có : \(x^2y+2xy+y=32x\)

\(\Leftrightarrow y\left(x^2+2x+1\right)=32x\)

\(\Leftrightarrow y\left(x+1\right)^2=32x\)

\(\Leftrightarrow y=\frac{32x}{\left(x+1\right)^2}\) Đến đây thì có vẻ dễ rồi nhé.

NV
5 tháng 2 2021

\(x^3-32x=-y\left(2x+1\right)\Rightarrow-y=\dfrac{x^3-32x}{2x+1}\)

\(\Leftrightarrow-8y=\dfrac{8x^3-256x}{2x+1}=4x^2-2x-127+\dfrac{127}{2x+1}\)

\(\Rightarrow2x+1=Ư\left(127\right)=\left\{-127;-1;1;127\right\}\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=-127\left(loại\right)\\2x+1=-1\left(loại\right)\\2x+1=1\left(loại\right)\\2x+1=127\end{matrix}\right.\) \(\Rightarrow x=63\Rightarrow y=-1953< 0\) (loại)

Pt đã cho không có nghiệm nguyên dương

12 tháng 3 2021

Cách khác: Ta có \(x^2y+2xy+y=32x\)

\(\Leftrightarrow y\left(x+1\right)^2=32x\).

Từ đó \(32x⋮\left(x+1\right)^2\).

Mà \(\left(x,\left(x+1\right)^2\right)=1\) nên \(32⋮\left(x+1\right)^2\Leftrightarrow\left(x+1\right)^2\in\left\{1;4;16\right\}\).

+) Với \(\left(x+1\right)^2=1\Rightarrow x=0\) (loại)

+) Với \(\left(x+1\right)^2=4\Rightarrow x=1;y=8\)

+) Với \(\left(x+1\right)^2=16\Rightarrow x=3;y=6\).

Vậy...

NV
12 tháng 3 2021

\(\Leftrightarrow y\left(x^2+2x+1\right)-32x-32=-32\)

\(\Leftrightarrow y\left(x+1\right)^2-32\left(x+1\right)=-32\)

\(\Leftrightarrow\left(x+1\right)\left(xy+y-32\right)=-32\)

Do \(x+1\ge2\) nên chỉ có các trường hợp sau:

TH1: \(\left\{{}\begin{matrix}x+1=2\\xy+y-32=-16\end{matrix}\right.\) 

TH2: \(\left\{{}\begin{matrix}x+1=4\\xy+y-32=-8\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}x+1=8\\xy+y-32=-4\end{matrix}\right.\)

TH4: \(\left\{{}\begin{matrix}x+1=16\\xy+y-32=-2\end{matrix}\right.\)

TH5: \(\left\{{}\begin{matrix}x+1=32\\xy+y-32=-1\end{matrix}\right.\)

Bạn tự giải

17 tháng 6 2019

a) x2 + 18x - 1600 = 0

=> x2 + 50x - 32x - 1600 = 0

=> x(x + 50) - 32(x + 50) = 0

=> (x + 50)(x - 32) = 0

=> x = -50; x = 32

b) x2 + 32x - 900 = 0

=> x2 + 50x - 18x - 900 = 0

=> x(x + 50) - 18(x + 50) = 0

=> (x + 50)(x - 18) = 0

=> x = -50; x = 18

c) x2 + 27x - 3600 = 0

=> x2 + 75x - 48x - 3600 = 0

=> x(x + 75) - 48(x + 75) = 0

=> (x + 75)(x - 48) = 0

=> x = -75; x = 48

d) x2 + 48x - 2025 = 0

=> x2 + 75x - 27x - 2025 = 0

=> x(x + 75) - 27(x + 75) = 0

=> (x + 75)(x - 27) = 0

=> x = -75; x = 27

17 tháng 6 2019

làm kiểu lớp 8 đc ko bạn