K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Ta có: \(\widehat {uOz} = \widehat {yOv}\) ( 2 góc đối đỉnh), mà \(\widehat {yOv} = 110^\circ \) nên \(\widehat {uOz} = 110^\circ \)

Mà \(\widehat {uOt},\widehat {tOz}\) là 2 góc kề nhau nên \(\widehat {uOt} + \widehat {tOz} = \widehat {uOz}\)

\(\begin{array}{l} \Rightarrow x + 40^\circ  = 110^\circ \\ \Rightarrow x = 110^\circ  - 40^\circ  = 70^\circ \end{array}\)

Vậy x = 70\(^\circ \)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Góc đối đỉnh của \(\widehat {yOv}\) là \(\widehat {zOu}\) vì tia Oz đối tia Oy, Ou đối tia Ov

b) Ta có: \(\widehat {uOz} = \widehat {yOv}\) ( 2 góc đối đỉnh), mà \(\widehat {yOv} = 110^\circ \) nên \(\widehat {uOz} = 110^\circ \)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Các góc kề với \(\widehat {tOz}\)là: \(\widehat {zOy},\widehat {zOn},\widehat {zOm}\)

b) Ta có: \(\widehat {mOn}\) = 30\(^\circ \) nên góc kề bù với \(\widehat {mOn}\) có số đo là: 180\(^\circ \) - 30\(^\circ \) = 150\(^\circ \)

c) Ta có:

\(\begin{array}{l}\widehat {mOn} + \widehat {nOy} + \widehat {yOt} = 180^\circ \\ \Rightarrow 30^\circ  + \widehat {nOy} + 90^\circ  = 180^\circ \\ \Rightarrow \widehat {nOy} = 180^\circ  - 30^\circ  - 90^\circ  = 60^\circ \end{array}\)

Vậy \(\widehat {nOy} = 60^\circ \)

d) Ta có: \(\widehat {tOz} = 45^\circ \) nên góc kề bù với \(\widehat {tOz}\) có số đo là: 180\(^\circ \) - 45\(^\circ \) = 135\(^\circ \)

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a)  Ta có: \(\Delta ABC\backsim\Delta A'B'C'\) thì \(\left\{ \begin{array}{l}\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\\\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = k\end{array} \right.\).

b) Xét tam giác \(DEF\) có:

\(\widehat D + \widehat E + \widehat F = 180^\circ \) (tổng ba góc trong một tam giác).

Ta có: \(\widehat D = 78^\circ ;\widehat E = 57^\circ \) thay số ta được

\(78^\circ  + 57^\circ  + \widehat F = 180^\circ  \Rightarrow \widehat F = 180^\circ  - 78^\circ  - 57^\circ  = 45^\circ \)

Ta có: \(\Delta DEF\backsim\Delta D'E'F' \Rightarrow \widehat D = \widehat {D'};\widehat E = \widehat {E'};\widehat F = \widehat {F'}\) (các góc tương ứng bằng nhau)

Do đó,  \(\widehat D = \widehat {D'} = 78^\circ ;\widehat F = \widehat {F'} = 45^\circ \).

c) Ta có  \(\Delta MNP\backsim\Delta M'N'P' \Rightarrow \frac{{MN}}{{M'N'}} = \frac{{MP}}{{M'P'}} = \frac{{NP}}{{N'P'}}\) (các cặp cạnh tương ứng có cùng tỉ lệ).

Với \(MP = 10;NP = 6;M'N' = 15;N'P' = 12\) thay vào ta được:

\( \Rightarrow \left\{ \begin{array}{l}\frac{{MN}}{{15}} = \frac{1}{2}\\\frac{{10}}{{M'P'}} = \frac{1}{2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}MN = \frac{{15.1}}{2} = 7,5\\M'P' = \frac{{10.2}}{1} = 20\end{array} \right.\).

Vậy \(MN = 7,5;M'P' = 20\).

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Vì On là tia phân giác của \(\widehat {mOp}\) nên:

+) \(\widehat {pOn}= \widehat {mOn}=33^\circ \)

+) \(\widehat {mOp} = 2.\widehat {mOn} = 2.33^\circ  = 66^\circ \)

Vì \(\widehat {qOr} = \widehat {pOn}\) ( 2 góc đối đỉnh), mà \(\widehat {pOn} = 33^\circ  \Rightarrow \widehat {qOr} = 33^\circ \)

Vì \(\widehat {pOq} + \widehat {qOr} = 180^\circ \) ( 2 góc kề bù) nên \(\widehat {pOq} + 33^\circ  = 180^\circ  \Rightarrow \widehat {pOq} = 180^\circ  - 33^\circ  = 147^\circ \)

Vậy \(\widehat {mOp} = 66^\circ ;\widehat {qOr} = 33^\circ ;\widehat {pOq} = 147^\circ \)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Hai góc \(\widehat {xOy}\) và \(\widehat {yOz}\) có cạnh Oy chung, không có điểm trong chung

b) Ta có:

\(\begin{array}{l}\widehat {xOy} = 30^\circ ,\widehat {yOz} = 45^\circ ,\widehat {xOz} = 75^\circ \\ \Rightarrow \widehat {xOy} + \widehat {yOz} = \widehat {xOz}\end{array}\)

c) Ta có: \(\widehat {mOn} + \widehat {nOp} = 33^\circ  + 147^\circ  = 180^\circ \)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Các góc kề với \(\widehat {xOy}\) là: \(\widehat {yOz};\widehat {yOt}\)

b) Ta có:

 \(\begin{array}{l}\widehat {xOy} + \widehat {yOz} + \widehat {zOt} = \widehat {xOt}\\ \Rightarrow 20^\circ  + \widehat {zOt} + \widehat {zOt} = 90^\circ \\ \Rightarrow 2.\widehat {zOt} = 90^\circ  - 20^\circ  = 70^\circ \\ \Rightarrow \widehat {zOt} = 70^\circ :2 = 35^\circ \end{array}\)

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Trong tứ giác \(ABCD\) có: \(\widehat {DAB} + \widehat {ABC} + \widehat {BCD} + \widehat {ADC} = 360^\circ \)

Ta có:

\(\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}}\\\)

\(= \left( {180^\circ  - \widehat {DAB}} \right) + \left( {180^\circ  - \widehat {ABC}} \right) + \left( {180^\circ  - \widehat {BCD}} \right) + \left( {180^\circ  - \widehat {ADC}} \right)\\\)

\(= 180^\circ  + 180^\circ  + 180^\circ  + 180^\circ  - \left( {\widehat {DAB} + \widehat {ABC} + \widehat {BCD} + \widehat {ADC}} \right)\\ \)

\(= 720^\circ  - 360^\circ \\\)

\(= 360^\circ \)

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Do ${ABCD}$ là hình thang cân (gt) nên \(\widehat A = \widehat B\)

Xét hình thang \(ABCD\) ta có: \(\widehat {\rm{A}} + \widehat {\rm{B}} + \widehat {\rm{C}} + \widehat {\rm{D}} = 360^\circ \)

\(\begin{array}{l}\widehat A + \widehat B + 75^\circ  + 75^\circ  = 360^\circ \\\widehat A + \widehat B = 210^\circ \end{array}\)   

Mà \(\widehat A = \widehat B\) (cmt)

Suy ra : \(\widehat {\rm{A}} = \widehat B = 105^\circ \)

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Ta chia tứ giác ABCD thành tam giác ACD và tam giác ABC

\( \Rightarrow \) Số đo tổng các góc tam giác ACD = tổng số đo các góc tam giác ABC  = \({180^o}\)

\( \Rightarrow \)Tổng số đo các góc trong tứ giác ABCD = tổng số đo các góc 2 tam giác ACD và ABC \( = {2.180^o} = {360^o}\)