Tìm số hữu tỉ trong các số sau:
\(12;\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{2}{3};\,\,\,\,\,\,3,\left( {14} \right);\,\,\,\,\,\,\,0,123;\,\,\,\,\,\,\,\,\sqrt 3 \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các số hữu tỉ dương là: \(\frac{5}{{12}};\,2\frac{2}{3}.\)
Các số hữu tỉ âm là: \( - \frac{4}{5}; - 2;\, - 0,32.\)
Số không là số hữu tỉ dương cũng không là số hữu tỉ âm là: \(\frac{0}{{234}}\).
b) Ta có: \( - \frac{4}{5} = -0,8\)
Vì 0 < 0,32 < 0,8 < 2 nên 0 > -0,32 > -0,8 > -2 hay \(-2 < - \frac{4}{5} < -0,32 < 0\)
Mà \(0 < \frac{5}{12} <1; 1<2\frac{2}{3}\) nên \(0 < \frac{5}{12} < 2\frac{2}{3}\)
Các số theo thứ tự từ nhỏ đến lớn là:
\(-2 ; - \frac{4}{5} ; -0,32; \frac{0}{{234}}; \frac{5}{12} ; 2\frac{2}{3}\)
Chú ý: \(\frac{0}{a} = 0\,,\,a \ne 0.\)
a) Ta có:
\(\begin{array}{l}\frac{{ - 10}}{{18}} =\frac{{ - 10:2}}{{18:2}} = \frac{{ - 5}}{9};\,\,\,\\\frac{{10}}{{18}} = \frac{{10:2}}{{18:2}} =\frac{5}{9};\,\,\\\,\frac{{15}}{{ - 27}} =\frac{{15:(-3)}}{{ - 27:(-3)}} = \frac{{ - 5}}{9};\,\\ - \frac{{20}}{{36}} =- \frac{{20:4}}{{36:4}}= \frac{{ - 5}}{9}.\end{array}\)
Vậy những phân số nào biểu diễn số hữu tỉ \(\frac{{ - 5}}{9}\) là: \(\frac{{ - 10}}{{18}};\,\frac{{15}}{{ - 27}};\, - \frac{{20}}{{36}}.\)
b) Số đối của các số \(12;\,\frac{{ 4}}{9};\, - 0,375;\,\frac{0}{5};\,-2\frac{2}{5}\) lần lượt là: \( - 12;\,\frac{-4}{9};\,0,375;\,\frac{0}{5};\, 2\frac{2}{5}\).
(I) đúng
(IV) đúng vì mỗi số nguyên dương đều là số hữu tỉ với mẫu bằng 1.
Chọn đáp án B.
`a, 16/x = x /25`
`<=> 16 . 25 = x^2`
`<=> 400 = x^2`
`<=> x = +-20`.
`b, x/-2 = -8/x`
`<=> x^2 = (-2).(-8)`
`<=> x^2 = 16`
`<=> x = +-4`.`
c, -4/x = x/-49`
`x^2 = (-4).(-49)`
`x^2 = 196`
`x = +-14.`
`d, -x/3 = 27/-x`
`<=> (-x)^2 = 81`
`<=> x^2 = 81`
`<=> x = +-9`
a: =>x-2=6,3
=>x=8,3
d:=>|x-3|=14
=>x-3=14 hoặc x-3=-14
=>x=17 hoặc x=-11
2:
a: Áp dụng tính chất của DTSBN, ta được:
a/5=b/-2=(a+b)/(5-2)=12/3=4
=>a=20; b=-8
b: Áp dụng tính chất của DTSBN, ta được:
a/4=b/5=(3a-2b)/(3*4-2*5)=42/2=21
=>a=84; b=105
Ta có \(\sqrt {3} = 1,732...\) nên là số thập phân vô hạn không tuần hoàn nên \(\sqrt 3 \) là số vô tỉ.
Các số hữu tỉ là: \(12;\,\,\frac{2}{3};\,\,3,\left( {14} \right);\,\,0,123\,\,\,\,\)