Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng:
\(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\) chia hết cho 5
Ta có : \(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n^4-1\right)=n^5-n\)
Vì \(n^5=n^{4+1}\) luôn có số tận cùng giống n
\(\Rightarrow n^5-n=\overline{.....0}⋮5\)
Hay \(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮5\) (đpcm)
Ta có : \(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n^4-1\right)=n^5-n\)
Vì \(n^5=n^{4+1}\) luôn có số tận cùng giống n
\(\Rightarrow n^5-n=\overline{.....0}⋮5\)
Hay \(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮5\) (đpcm)