K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

\(A=9x^2-6x+2=\left(9x^2-6x+1\right)+1\) 

\(=\left(3x-1\right)^2+1\) 

Với mọi giá trị của x , ta có:

\(\left(3x-1\right)^2\ge1\Rightarrow\left(3x-1\right)^2+1\ge1\) 

Vậy \(Min_A=1\) 

Để A = 1 thì \(3x-1=0\Rightarrow3x=1\Rightarrow x=\frac{1}{3}\) 

\(B=x^2-7x+11=\left(x^2-7x+\frac{49}{4}\right)-\frac{5}{4}\) 

\(=\left(x-\frac{7}{2}\right)^2-\frac{5}{4}\) 

Với moị giá trị của x , ta có:

\(\left(x-\frac{7}{2}\right)^2\ge0\Rightarrow\left(x-\frac{7}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\) 

Vậy \(Min_B=-\frac{5}{4}\)

Để B = \(-\frac{5}{4}\) thì \(x-\frac{7}{2}=0\Rightarrow x=\frac{7}{2}\) 

\(C=x^2+x+5=\left(x^2+x+\frac{1}{4}\right)+\frac{19}{4}\) 

\(=\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\) 

Với mọi giá trị của x thì :

\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\) 

Vậy : \(Min_C=\frac{19}{4}\) 

Để \(C=\frac{19}{4}\) thì \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\) 

\(D=\left(x-1\right)\left(x+2\right)+1=x^2+x-2+1\) 

\(=x^2+x-1=\left(x^2+x+\frac{1}{4}\right)-\frac{5}{4}\) 

\(=\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\) 

Với mọi giá trị của x . ta có:

\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\) 

Vậy \(Min_D=-\frac{5}{4}\) 

Để \(D=-\frac{5}{4}\) thì \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

Tìm GTLN - GTNN của các biểu thức ?* bài 1: Tìm GTNN: a) A= (x - 5)² + (x² - 10x)² - 24 b) B= (x - 7)² + (x + 5)² - 3 c) C= 5x² - 6x +1 d) D= 16x^4 + 8x² - 9 e) A= (x + 1)(x - 2)(x - 3)(x - 6) f) B= (x - 2)(x - 4)(x² - 6x + 6) g) C= x^4 - 8x³ + 24x² - 8x + 25 h) D= x^4 + 2x³ + 2x² + 2x - 2 i) A= x² + 4xy + 4y² - 6x – 12y +4 k) B= 10x² + 6xy + 9y² - 12x +15 l) C= 5x² - 4xy + 2y² - 8x – 16y +83 m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 *...
Đọc tiếp

Tìm GTLN - GTNN của các biểu thức ?

* bài 1: Tìm GTNN: 
a) A= (x - 5)² + (x² - 10x)² - 24 
b) B= (x - 7)² + (x + 5)² - 3 
c) C= 5x² - 6x +1 
d) D= 16x^4 + 8x² - 9 

e) A= (x + 1)(x - 2)(x - 3)(x - 6) 
f) B= (x - 2)(x - 4)(x² - 6x + 6) 
g) C= x^4 - 8x³ + 24x² - 8x + 25 
h) D= x^4 + 2x³ + 2x² + 2x - 2 

i) A= x² + 4xy + 4y² - 6x – 12y +4 
k) B= 10x² + 6xy + 9y² - 12x +15 
l) C= 5x² - 4xy + 2y² - 8x – 16y +83 

m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 

* Bài 2: Tìm GTLN: 
a) M= -7x² + 4x -12 
b) N= -16x² - 3x +14 

c) M= -x^4 + 4x³ - 7x² + 12x -5 
d) N= -(x² + x – 2) (x² +9x+18) +27 

* Bài 3: 
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y² 
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y² 
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³ 

* Bài 4: Tìm GTLN và GTNN của các biểu thức: 
1) A = (3 - 4x)/(x² + 1) 
2) B= (8x + 3)/(4x² + 1) 
3) C= (2x+1)/(x²+2)

0
28 tháng 2 2021

 4-3=2( dân chơi mới hiểu)

22 tháng 6 2021

Chắc là viết thiếu số "1" đấy, sợ lớp 11 còn chưa làm được cơ

 

24 tháng 7 2016

\(A=x^2-6x=x^2-6x+9-9=\left(x-3\right)^2-9\Rightarrow minA=-9\)

\(B=2x^2+7x-2=2\left(x^2+2\cdot\frac{7}{4}x+\frac{49}{16}\right)-\frac{65}{8}=2\left(x+\frac{7}{4}\right)^2-\frac{65}{8}\Rightarrow minB=-\frac{65}{8}\)

\(C=3x^2-6x-1=3\left(x^2-2x+1\right)-4=3\left(x-1\right)^2-4\Rightarrow minC=-4\)

\(D=x^2+x-1=\left(x^2+2x\cdot\frac{1}{2}+\frac{1}{4}\right)-\frac{5}{4}=\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\Rightarrow minD=-\frac{5}{4}\)

6 tháng 11 2021

\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)

\(minA=4\Leftrightarrow x=2\)

\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)

\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)

\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)

\(minC=-8\Leftrightarrow x=-1\)

\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)

\(maxD=-4\Leftrightarrow x=1\)

\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)

\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)

\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)

\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)

\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)

\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)

\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

8 tháng 11 2021

hk có câu H na bạn?
bạn thiếu câu cuối kìa

Bài 2: 

a) Ta có: \(A=\left(7x+5\right)^2+\left(3x-5\right)^2-\left(10-6x\right)\left(5+7x\right)\)

\(=\left(7x+5\right)^2+2\cdot\left(7x+5\right)\cdot\left(3x-5\right)+\left(3x-5\right)^2\)

\(=\left(7x+5+3x-5\right)^2\)

\(=\left(10x\right)^2=100x^2\)

Thay x=-2 vào A, ta được:

\(A=100\cdot\left(-2\right)^2=100\cdot4=400\)

b) Ta có: \(B=\left(2x+y\right)\left(y^2-2xy+4x^2\right)-8x\left(x-1\right)\left(x+1\right)\)

\(=8x^3+y^3-8x\left(x^2-1\right)\)

\(=8x^3+y^3-8x^3+8x\)

\(=8x+y^3\)

Thay x=-2 và y=3 vào B, ta được:

\(B=-2\cdot8+3^3=-16+27=11\)

22 tháng 7 2021

Ai help mk vs

14 tháng 7 2019

A = x2 - 8x + 1 = (x2 - 8x + 16) - 15 = (x - 4)2 - 15

Ta có: (x - 4)2 \(\ge\)\(\forall\)x

=> (x - 4)2 - 15 \(\ge\)-15 \(\forall\) x 

Dấu "=" xảy ra khi: x - 4 = 0 <=> x = 4

vậy Min của A = -15 tại x = 4

B = 9x2 - 12x - 2 = 9(x2 - 4/3x + 4/9) - 6 = 9(x - 2/3)2 - 6

Ta có: (x - 2/3)2 \(\ge\)\(\forall\)x ---> 9(x - 2/3)2 \(\ge\)\(\forall\)x

=> 9(x - 2/3)2 - 6 \(\ge\)-6 \(\forall\)x

Dấu "=" xảy ra khi: x - 2/3 = 0 <=> x = 2/3

vậy Min của B = -6 tại x = 2/3