K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

\(A=9x^2-6x+2=\left(9x^2-6x+1\right)+1\) 

\(=\left(3x-1\right)^2+1\) 

Với mọi giá trị của x , ta có:

\(\left(3x-1\right)^2\ge1\Rightarrow\left(3x-1\right)^2+1\ge1\) 

Vậy \(Min_A=1\) 

Để A = 1 thì \(3x-1=0\Rightarrow3x=1\Rightarrow x=\frac{1}{3}\) 

\(B=x^2-7x+11=\left(x^2-7x+\frac{49}{4}\right)-\frac{5}{4}\) 

\(=\left(x-\frac{7}{2}\right)^2-\frac{5}{4}\) 

Với moị giá trị của x , ta có:

\(\left(x-\frac{7}{2}\right)^2\ge0\Rightarrow\left(x-\frac{7}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\) 

Vậy \(Min_B=-\frac{5}{4}\)

Để B = \(-\frac{5}{4}\) thì \(x-\frac{7}{2}=0\Rightarrow x=\frac{7}{2}\) 

\(C=x^2+x+5=\left(x^2+x+\frac{1}{4}\right)+\frac{19}{4}\) 

\(=\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\) 

Với mọi giá trị của x thì :

\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\) 

Vậy : \(Min_C=\frac{19}{4}\) 

Để \(C=\frac{19}{4}\) thì \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\) 

\(D=\left(x-1\right)\left(x+2\right)+1=x^2+x-2+1\) 

\(=x^2+x-1=\left(x^2+x+\frac{1}{4}\right)-\frac{5}{4}\) 

\(=\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\) 

Với mọi giá trị của x . ta có:

\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\) 

Vậy \(Min_D=-\frac{5}{4}\) 

Để \(D=-\frac{5}{4}\) thì \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

24 tháng 7 2016

\(A=x^2-6x=x^2-6x+9-9=\left(x-3\right)^2-9\Rightarrow minA=-9\)

\(B=2x^2+7x-2=2\left(x^2+2\cdot\frac{7}{4}x+\frac{49}{16}\right)-\frac{65}{8}=2\left(x+\frac{7}{4}\right)^2-\frac{65}{8}\Rightarrow minB=-\frac{65}{8}\)

\(C=3x^2-6x-1=3\left(x^2-2x+1\right)-4=3\left(x-1\right)^2-4\Rightarrow minC=-4\)

\(D=x^2+x-1=\left(x^2+2x\cdot\frac{1}{2}+\frac{1}{4}\right)-\frac{5}{4}=\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\Rightarrow minD=-\frac{5}{4}\)

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

14 tháng 7 2019

A = x2 - 8x + 1 = (x2 - 8x + 16) - 15 = (x - 4)2 - 15

Ta có: (x - 4)2 \(\ge\)\(\forall\)x

=> (x - 4)2 - 15 \(\ge\)-15 \(\forall\) x 

Dấu "=" xảy ra khi: x - 4 = 0 <=> x = 4

vậy Min của A = -15 tại x = 4

B = 9x2 - 12x - 2 = 9(x2 - 4/3x + 4/9) - 6 = 9(x - 2/3)2 - 6

Ta có: (x - 2/3)2 \(\ge\)\(\forall\)x ---> 9(x - 2/3)2 \(\ge\)\(\forall\)x

=> 9(x - 2/3)2 - 6 \(\ge\)-6 \(\forall\)x

Dấu "=" xảy ra khi: x - 2/3 = 0 <=> x = 2/3

vậy Min của B = -6 tại x = 2/3

15 tháng 10 2016

g) (x+2)(x+3)(x+4)(x+5)-24 = \(\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

                                       =\(\left[x^2+7x+10\right]\left[x^2+7x+12\right]\)

đặt \(x^2+7x+10=a\)

ta có \(a\left(a+2\right)-24=a^2+2a-24\)

                                      \(=a^2+2a+1-25\)

                                      \(=\left(a+1\right)^2-5^2\)

                                      \(=\left(a+1-5\right)\left(a+1+5\right)\)

                                     \(=\left(a-4\right)\left(a+6\right)\)

\(\Rightarrow\) \(\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

15 tháng 10 2016

a) = (x +5)2 - 22 = (x+5 -2)(x+5 +2) = (x+3)(x+7)

b) = x(x2 -1) -6(x-1)= x(x+1)(x-1) -6(x-1) = (x-1)(x(x+1)-6)

22 tháng 7 2019

a) x2 - 4x - 5 = 0

=> x2 - 5x + x - 5 = 0

=> x(x - 5) + (x - 5) = 0

=> (x + 1)(x - 5) = 0

=> \(\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)

b) 4x2 + 7x - 11 = 0

=> 4x2 + 11x - 4x - 11 = 0

=> x(4x + 11) - (4x + 11) = 0

=> (x - 1)(4x + 11) = 0

=> \(\orbr{\begin{cases}x-1=0\\4x+11=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=1\\x=-\frac{11}{4}\end{cases}}\)

22 tháng 7 2019

c) -7x2 + 6x + 1 = 0

=> -7x2 + 7x - x + 1 = 0

=> -7x(x - 1) - (x - 1) = 0

=> (-7x - 1)(x - 1) = 0

=> \(\orbr{\begin{cases}-7x-1=0\\x-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}-7x=1\\x=1\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{1}{7}\\x=1\end{cases}}\)

d) -10x2 + 7x + 3 = 0

=> -10x2 + 10x - 3x + 3 = 0

=> -10x(x - 1) - 3(x - 1) = 0

=> (-10x - 3)(x - 1) = 0

=> \(\orbr{\begin{cases}-10x-3=0\\x-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}-10x=3\\x=1\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{3}{10}\\x=1\end{cases}}\)

10 tháng 7 2016

b) mình khỏi ghi đề lại ha :3

=> 2x^2 - 4x + 2 + 3x^2 + 12x + 12 - 25x^2 + 1= 15

sau đó bạn gom lại những số vd như là 4x với 12x,..... rồi tính ra đc là

-20x^2 + 8x + 15 = 15

=> -20x^2 + 8x = 0

=> 2x ( -10x + 4 ) = 0

=> 2x = 0 => x= 0

hoặc -10x +4 = 0

        => -10x = -4

        => x     = 4/ 10

10 tháng 7 2016

a) ( 2x-3)^ 2 - ( 2x + 5) ^ 2 = 18

=> 4x^2 - 12x + 9 - ( 4x^2 + 20x + 25 ) = 18

=>  4x^2 - 12x + 9 - 4x^2 - 20x - 25  = 18

=> (4x^2- 4x^2) + (-12x - 20x) + ( 9 -25 ) = 18 

=>         0         -          32x    -       16    = 18

=>          -32x                                       = 32

=>             x                                         = -1

bạn đợi mình type câu b :v