Tìm số nguyên x để các phân số có giá trị là một số nguyên
5/x+1
x+3/x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) Để x-3/x+3 là một số nguyên thì x+3 khác 0 và x-3 ko chia hết cho x+3
=>x+3-6 ko chia hết cho x+3
=>6 ko chia hết cho x-3
=>x-3 ko thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
=> x-3 khác {1;2;3;6;-1;-2;-3;-6}
=>x khác {4;5;6;9;2;1;0;-3}
b) Để A là một số nguyên thì x-3 chia hết cho x+3
=>x+3-6 chia hết cho x-3
=>6 chia hết cho x-3
=>x-3 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
Đến đây bn tự lm phần còn lại nha
Bài 2:
Câu a lm giống như câu b bài 1 nha bn
b) Bn tham khảo nha
https://hoidap247.com/cau-hoi/346697
Tìm cái bài thứ hai ý nhưng nhìn hơi khó
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
D=(2(x-1)/(x-1))-(1/x-1) (đk x-1 khác 0 => x khác 1)
để D đạt gtri nguyên thì x-1 phải là Ư(1)
=>x-1=1;x-1=-1
=>x=2;x=0
Để D coa giá trị là một số nguyên:
\(\Rightarrow2x-3⋮x-1\)
\(\Rightarrow\left(2x-3\right)-2\left(x-1\right)⋮x-1\)
\(\Rightarrow2x-3-2x-2⋮x-1\)
\(\Rightarrow1⋮x-1\)
\(\Rightarrow x-1\in\left\{\pm1\right\}\)
\(x-1\) | \(1\) | \(-1\) |
\(x\) | \(2\) | \(0\) |
Vậy \(x\in\left\{0;2\right\}\)
\(\)
a, Để M nguyên <=> 2x+1 \(⋮\)2
=> 2x+1 \(\in\)Ư (2)={ 2,-2,1,-1}
Đk x \(\in\)Z
Với 2x+1= 2 => x= 1/2. ( loại)
...
Làm tt => x={ 0; -1}
Vậy x= 0, x= -1 thì M nguyên
b, N = (x-3)/x = 1-(3/x)
Để N nguyên <=> 3\(⋮\)x
<=> x \(\in\)Ư(3)={ 1,-1,3,-3}
Vậy x ={ 1,-1,3,-3} thì N nguyên
c, H = (x-2)/2x (1)
Để H nguyên <=>x-2 chia hết cho 2x
=> 2.(x-2) phải chia hết cho 2x
Hay 2.(x-2) /2x = 1-(2/x) nguyên
=> x thuộc Ư (2)={ 2,-2,1,-1}
Thay x vào(1) để H nguyên => x={2,-2}
Vậy x={2,-2} thì H nguyên
\(\frac{x+1}{x-2}\)
Để \(\frac{x+1}{x-2}\inℤ\Rightarrow x+1⋮x-2\Rightarrow\left(x-2\right)+3⋮x-2\Rightarrow3⋮x-2\)
\(\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\Rightarrow x\in\left\{3;1;5;-1\right\}\)
\(\frac{12x+1}{30x+2}\)
Gọi \(n=ƯC\left(12x+1;30x+2\right)\)
\(\Rightarrow\hept{\begin{cases}12x+1⋮n\Rightarrow60x+5⋮n\\30x+2⋮n\Rightarrow60x+4⋮n\end{cases}}\)
\(\Rightarrow\left(60x+5\right)-\left(60x+4\right)⋮x\Rightarrow1⋮n\Rightarrow n=1\Rightarrow\frac{12x+1}{30x+2}\)là phân số tối giản
a) để\(\frac{5}{x+1}\)là số nguyên
<=> x + 1 E Ư(5) (x khác -1)
<=> x + 1 E {1;-1;5.-5}
x + 1 =1 => x = 2
x + 1 = -1 => x = 0
x + 1 = 5 => x = 6
x + 1 = -5 => x = -4
a) để \(\frac{5}{x+1}\)là số nguyên
< = > x + 1 E Ư ( x khác -1 )
< = > x + 1 E (1;-1;5;-5)
x + 1 = 1 = > x = 2
x + 1 = -1 = > x = 0
x + 1 = 5 = > x = 6
x + 1 = -5 = > x = 4
Đáp số :.................