Tính B : B=1+3/2^3 + 4/2^4 +...+10/2^100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
\(B=\left(2^5+3^5+4^5\right).\left(1^2+2^2+...+100^2\right).\left(4^{10}-2^{20}\right)\)
=>\(B=\left(2^5+3^5+4^5\right).\left(1^2+2^2+...+100^2\right).\left(\left(2^2\right)^{10}-2^{20}\right)\)
=>\(B=\left(2^5+3^5+4^5\right).\left(1^2+2^2+...+100^2\right).\left(2^{20}-2^{20}\right)\)
=>\(B=\left(2^5+3^5+4^5\right).\left(1^2+2^2+...+100^2\right).0\)
=>B=0
A = 1 . 2 + 2 . 3 + 3 . 4 + ... + 99 .100
3 . A = 1. 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 + ... + 99 . 100 . 3
3 . A = 1 . 2 . 3 + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 ) + ... + 99 . 100 . ( 1001 - 998 )
3 . A = 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 99 . 100 . 1001 - 998 . 99 . 100
3 . A = 99 . ( 100 . 10 )
A = ( 99 . 100 . 10 ) : 3
A = 33000
a: \(2\dfrac{2}{10}=2,2\)
\(4\dfrac{31}{100}=4,31\)
9/10=0,9
51/10=5,1
75/100=0,75
125/100=1,25
1075/1000=1,075
\(14\dfrac{17}{100}=14,17\)
b: 1/2=0,5
3/4=0,75
4/5=0,8
5/8=0,625
\(2\dfrac{1}{2}=2,5\)
\(3\dfrac{1}{4}=3,25\)
\(1\dfrac{3}{5}=1,6\)
\(4\dfrac{3}{8}=4,375\)
\(A=\frac{99.100.101}{3}=333300\)
\(B=\frac{2015.2016.2017.2018}{4}-\frac{6.7.8.9}{4}=4133639960604\)
\(C=\frac{3^{51}-1}{3}+1\)
3A= 1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
3A= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
3a= 99.100.101