phan tich da thuc thanh nhan tu
x2(y-z) + y2(z-x) + z2(x-y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi da thuc tren la A
Thay a=b -> A= 0 -> A chua nghiem la a-b
Tuong tu b=c-> A = 0 - > A chua nghiem la b -c
Tuong tu c =a - > A = 0 -> A chua nghiem la c-a
=> A = k(a - b)(b - c)(c - a)
Vì A có bậc 3 mà (a - b)(b - c)(c - a) cũng có bậc 3 -> k là 1 số
Thay a = 3, b= 2, c= 1
=> A= -6=k.1.1..-2
=> k = 3
=> A = 3(a - b)(b - c)(c - a)
Đây gọi là phương pháp giá trị riêng bạn nha!
x^5 + x + 1
= x^5 - x^2 + (x^2 + x + 1)
= x^2(x^3 - 1) + ( x^2 + x + 1)
= x^2( x - 1)(x^2 + x + 1) + ( x^2 + x + 1)
= (x^3 - x^2 + 1)(x^ 2 + x + 1)
Ta có : \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)
\(=\left[xy\left(x+y\right)+xyz\right]+\left[yz\left(y+z\right)+xyz\right]+xz\left(x+z\right)\)
\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)
\(=y\left(x+y+z\right)\left(x+z\right)+xz\left(x+z\right)\)
\(=\left(x+z\right)\left(xy+y^2+yz+xz\right)\)
\(=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
\(x^3+y^3+z^3-3xyz\) \(=\left(x+y\right)^3-3x^2y-3xy^2+z^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
HỌC TỐT NHA!
ta có:
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz)