Viết tên hai góc kề bù trong Hình 3.4 và tính số đo góc mOt.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Hai góc kề bù:
$\widehat{xOy}$ và $\widehat{yOm}$
b.
Vì $\widehat{xOy}$ và $\widehat{yOm}$ kề bù nên:
$\widehat{xOy}+\widehat{yOm}=180^0$
$\widehat{yOm}=180^0-\widehat{xOy}=180^0-60^0=120^0$
c.
Vì $Om$ là phân giác $\widehat{xOy}$ nên $\widehat{yOt}=\widehat{xOt}=\frac{1}{2}\widehat{xOy}=\frac{1}{2}.60^0=30^0$
$\widehat{xOt}$ và $\widehat{tOm}$ là 2 góc kề bù nên:
$\widehat{xOt}+\widehat{tOm}=180^0$
$\widehat{tOm}=180^0-\widehat{xOt}=180^0-30^0=150^0$
a) Ta có:
∠MAP= ∠NAQ (hai góc đối đỉnh)
⇒ ∠NAQ = 45o
⇒ ∠NAQ = 45o
b) Ta có:
∠MAP + ∠MAQ = 180o ( hai góc kề bù )
⇒ 45o + ∠MAQ = 180o
⇒ ∠MAQ = 180o − 45o = 135o
c) Các cặp góc đối đỉnh là:
∠MAP, ∠NAQ
∠NAP, ∠MAQ
d) Các cặp góc bù nhau là:
∠MAP, ∠NAP
∠MAP, ∠MAQ
∠NAQ, ∠NAP
∠NAQ, ∠MAQ
Để vẽ các góc có số đo 100 độ, ta cần một cặp song song song và một cặp cạnh chéo nhau. Vì tia OZ được cho là tia đối của tia OX nên ta vẽ một đường thẳng đi qua điểm O và cắt tia OX tạo thành tia OZ. a) Trong hình vẽ trên, tên hai góc kề bù là góc xOY và góc yOZ. b) Để tính số đo góc yOZ, ta cần biết số đo góc xOY và biết rằng các góc kề bù có tổng bằng 180 độ. Vì vậy, đại lượng đo góc yOZ = 180 - đại lượng đo góc xOY. c) Để vẽ đường phân giác OT của góc xOY, ta có thể tìm trung điểm M của đoạn thẳng XY, sau đó vẽ đường thẳng đi qua đỉnh O và trung điểm M. - Để tính số đo góc TOY, ta biết rằng TOY là đường phân giác của góc xOY, nên số đo góc TOY = 0.5 * số đo góc xOY. - Để tính số đo góc TOZ, ta biết rằng TO là đường phân giác của góc xOY, nên số đo góc TOZ = 0.5 * số đo góc xOY. Mong rằng câu trả lời này đã giúp bạn hiểu và thực hiện được yêu cầu vẽ và tính toán
1:
a: Hai cặp góc đối đỉnh là \(\widehat{xOy};\widehat{x'Oy'}\) và \(\widehat{xOy'};\widehat{x'Oy}\)
b: hai cặp góc bù nhau là:
\(\widehat{xOy};\widehat{xOy'}\)
\(\widehat{x'Oy};\widehat{x'Oy'}\)
a) Hai góc kề bù có trên hình vừa vẽ là góc xOy và mOy
b) Vì \(\widehat {xOy} + \widehat {yOm} = 180^\circ \) (2 góc kề bù)
\(\begin{array}{l} \Rightarrow 60^\circ + \widehat {yOm} = 180^\circ \\ \Rightarrow \widehat {yOm} = 180^\circ - 60^\circ = 120^\circ \end{array}\)
c) Vì tia Ot là tia phân giác của góc xOy nên \(\widehat {xOt} = \widehat {tOy} = \frac{1}{2}.\widehat {xOy} = \frac{1}{2}.60^\circ = 30^\circ \)
Mà \(\widehat {xOt}\) và \(\widehat {tOm}\) là hai góc kề bù nên
\(\begin{array}{l}\widehat {xOt} + \widehat {tOm} = 180^\circ \\ \Rightarrow 30^\circ + \widehat {tOm} = 180^\circ \\ \Rightarrow \widehat {tOm} = 180^\circ - 30^\circ = 150^\circ \end{array}\)
Vậy \(\widehat {tOy} = 30^\circ ;\widehat {tOm} = 150^\circ \)
a, \(\widehat{xOy}\) + \(\widehat{yOz}\) = 1800; \(\widehat{xOy}\) = \(\widehat{yOz}\) ⇒ 2\(\widehat{xOy}\) = 1800
⇒ \(\widehat{yOz}\) = \(\widehat{xOy}\) = 1800 : 2 = 900
b, Các cặp góc bằng nhau là:
\(\widehat{yOz}\) = \(\widehat{xOm}\); \(\widehat{yOz}\) = \(\widehat{xOy}\); \(\widehat{yOz}\) = \(\widehat{zOm}\);
\(\widehat{zOm}\) = \(\widehat{mOx}\); \(\widehat{zOm}\) = \(\widehat{xOz}\);
\(\widehat{xOm}\) = \(\widehat{xOy}\);
2 góc kề bù trong hình là: góc mOt và tOn
Ta có:
\(\begin{array}{l}\widehat {mOt} + \widehat {tOn} = 180^\circ \\\widehat {mOt} = 180^\circ - \widehat {tOn} = 180^\circ - 60^\circ = 120^\circ \end{array}\)