Goi AM, BN, CL la ba duong cao cua tam giac ABC. Cm:
a. Tam giac ANL dong dang tam giac ABC.
b. AN.BL.CM = AB.BC.CA.cosAcosBcosC.
Mn giup mk nha cam on mn nhieu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là tia phân giác của góc BAC
c: Xét ΔABI và ΔACI có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
DO đó: ΔABI=ΔACI
Suy ra: \(\widehat{ABI}=\widehat{ACI}=90^0\)
hay CI\(\perp\)CA
a.
Xét tam giác AFH và tam giác ADB có:
góc A chung
góc F = H = 90o
Do đó: tam giác AFH~ADB (g.g)
b.
Xét tam giác BHF và tam giác CHE có:
góc BHF = CHE ( đối đỉnh)
góc F = E = 90o
Do đó: tam giác BHF~CHE (g.g)
=> \(\dfrac{BH}{HF}=\dfrac{BF}{HE}\Rightarrow BH.HF=CH.HE\)
c.
Xét tam giác BFH và tam giác CHA có:
góc FBH = HCA ( BHF~CHE)
góc F = H =90o
Do đó: tam giác BGH~CHA (g.g)
d.
Xét tam giác BFD và tam giác BCA có:
góC B chung
\(\dfrac{BF}{BC}=\dfrac{BD}{BA}\left(\Delta BFC\sim\Delta BDA\right)\)
Do đó: tam giác BFD~BCD (g.g)
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao