Chứng tỏ nếu a thuộc N và a ko chia hết cho 3 và a lẻ thì a2-1 chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
a) Gọi số chẵn nhỏ nhất trong ba số chẵn liên tiếp là 2x (x \(\inℤ\))
=> Tổng ba số chẵn liên tiếp = 2x + (2x + 2) + (2x + 4)
=> 2x + (2x + 2) + (2x + 4) = 2x + 2x + 2 + 2x + 4
=> 2x + (2x + 2) + (2x + 4) = (2x + 2x + 2x) + (2 + 4)
=> 2x + (2x + 2) + (2x + 4) = 2.3x + 6
=> 2x + (2x + 2) + (2x + 4) = 6x + 6.1
=> 2x + (2x + 2) + (2x + 4) = 6.(x + 1) \(⋮\)6
=> Tổng ba số tự nhiên liên tiếp chia hết cho 6
=> ĐPCM
b) Bg
Tổng ba số lẻ liên tiếp luôn là một số lẻ
Mà 6 chẵn
=> Tổng của ba số lẻ liên tiếp không chia hết cho 6
=> ĐPCM
c) Bg
Ta có: a \(⋮\)b và b \(⋮\)c (a, b, c \(\inℤ\))
Vì a \(⋮\)b
=> a = by (bởi y \(\inℤ\))
Mà b \(⋮\)c
=> by \(⋮\)c
=> a \(⋮\)c
=> ĐPCM
d) Bg
Ta có: P = a + a2 + a3 +...+ a2n (a, n\(\inℕ\))
=> P = (a + a2) + (a3 + a4)...+ (a2n - 1 + a2n)
=> P = [a.(a + 1)] + [a3.(a + 1)] +...+ [a2n - 1.(a + 1)]
=> P = (a + 1).(a + a3 + a2n - 1) \(⋮\)a + 1
=> P = a + a2 + a3 +...+ a2n \(⋮\)a + 1
=> ĐPCM (Điều phải chứng mình)
A = n2 - 1
- Vì n lẻ nên n2 lẻ => n2 - 1 chẵn => A chia hết cho 2
- Vì n không chia hết cho 3 nên n chia cho 3 dư 1 hoặc dư 2
+ Nếu n chia cho 3 dư 1 thì n = 3k + 1 => n2 = (3k + 1)2 = (3k + 1).(3k + 1) = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 => n2 - 1 = 3(3k2 + 2k) chia hết cho 3 => A chia hết cho 3
+ Nếu n chia cho 3 dư 2 thì n = 3k + 2 => n2 = (3k + 2)2 = (3k + 2).(3k + 2) = 9k2 + 12k + 4 = 3.(3k2 + 4k + 1) + 1
=> n2 - 1 = 3.(3k2 + 4k + 1) => A chia hết cho 3
Vậy A chia hết cho 2 và 3 nên A chia hết cho 6
giải
A = n2 - 1
Vì n lẻ nên n2 lẻ => n2 - 1 chẵn => A chia hết cho 2
Vì n không chia hết cho 3 nên n chia cho 3 dư 1 hoặc dư 2
Nếu n chia cho 3 dư 1 thì n = 3k + 1 => n2 = (3k + 1)2 = (3k + 1).(3k + 1) = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 => n2 - 1 = 3(3k2 + 2k) chia hết cho 3 => A chia hết cho 3
Nếu n chia cho 3 dư 2 thì n = 3k + 2 => n2 = (3k + 2)2 = (3k + 2).(3k + 2) = 9k2 + 12k + 4 = 3.(3k2 + 4k + 1) + 1
=> n2 - 1 = 3.(3k2 + 4k + 1) => A chia hết cho 3
Vậy A chia hết cho 2 và 3 nên A chia hết cho 6
hok tốt
Ta có a là 1 số lẻ => a không chia hết cho 2
Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)
=> a sẽ có dạng 6k+1 hoặc 6k + 5
Khi a = 6k+1, ta có:
a2-1 = (6k+1)2 - 1
= (6k+1).(6k+1)-1
= (6k+1).6k + (6k+1).1 -1
= 36k2 + 6k + 6k + 1 -1
= 36k2 + 6k + 6k = 36k2 + 12k
= 6(6k2 + 2k)
=> a2-1 chia hết cho 6
Khi a = 6k+5, ta có:
a2- 1 = (6k + 5)2- 1
= (6k + 5).(6k+5)-1
= (6k + 5).6k + (6k + 5).5 - 1
= 36k2 + 30k + 30k + 24
= 6(6k2 + 5k + 5k + 4)
=> a2-1 chia hết cho 6
Lời giải:
Nếu $a$ là số lẻ không chia hết cho $3$ thì $a$ có dạng $6k+1$ hoặc $6k+5$ với $k$ tự nhiên.
Nếu $a=6k+1$:
$a^2-1=(6k+1)^2-1=36k^2+12k+1-1=36k^2+12k=6(6k^2+2k)\vdots 6$
Nếu $a=6k+5$:
$a^2-1=(6k+5)^2-1=36k^2+60k+24=6(6k^2+5k+4)\vdots 6$
Vậy trong TH nào thì $a^2-1$ cũng luoonc hia hết cho $6$.
a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1
Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.
Vậy n chia 8 dư 1.
b) Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Ta có: a không chia hết cho 3
TH1: a=3m+1 (m thuộc N)
=>a2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1
=>a2 chia 3 dư 1
TH2: a=3n+2 (n thuộc N)
=>a2=(3n+2)2=3n(3n+2)+2(3n+2)=9n2+6n+6n+4=3(3n2+4n+1)+1
=>a2 chia 3 dư 1
Vậy a2 luôn chia 3 dư 1
=>a2-1 chia hết cho 3 (1)
Ta có: a lẻ
=>a2 lẻ
=>a2-1 chẵn
=>a2-1 chia hết cho 2 (2)
Từ (1) và (2) và (3;2)=1
=>a2-1 chia hết cho 3.2=6 (đpcm)
Ta có:
a2 - 1 = (a - 1)(a + 1)
Vì a là số lẻ => a - 1 và a + 1 là số chẵn => a2 - 1 chia hết cho 2 (1)
Xét 3 số tự nhiên liên tiếp: a - 1; a; a + 1
Vì a khoogn chia hết cho 3 => 1 trong 2 số a - 1 và a + 1 chia hết cho 3 => a2 - 1 chia hết cho 3 (2)
Từ (1) và (2), kết hợp vs (2,3) = 1 => a2 - 1 chia hết cho 2.3 = 6
+ Do a lẻ => a^2 lẻ => a^2 - 1 chẵn => a^2 - 1 chia hết cho 2 (1)
+ Do a không chia hết cho 3 => a = 3k + 1 hoặc a = 3k + 2 (k thuộc N)
Nếu a = 3k + 1 thì a^2 = (3k + 1).(3k + 1) = (3k + 1).3k + (3k + 1) = 9k 2 + 3k + 3k + 1 chia 3 dư 1
Nếu a = 3k + 2 thì a^2 = (3k + 2).(3k + 2) = (3k + 2).3k + 2.(3k + 2) = 9k 2 + 6k + 6k + 4 chia 3 dư 2
=> a^2 chia 3 dư 1 => a^2 - 1 chia hết cho 3 (2)
Từ (1) và (2), do (2;3)=1 => a 2 - 1 chia hết cho 6
nhe