K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2015

A = n- 1 

- Vì n lẻ nên nlẻ => n - 1 chẵn => A chia hết cho 2

- Vì n không chia hết cho 3 nên n chia cho 3 dư 1 hoặc dư 2

+ Nếu n chia cho 3 dư 1 thì n = 3k + 1 => n2 = (3k + 1)= (3k + 1).(3k + 1) = 9k+ 6k + 1 = 3(3k2 + 2k) + 1 => n2 - 1 = 3(3k+ 2k) chia hết cho 3 => A chia hết cho 3

+ Nếu n chia cho 3 dư 2 thì n = 3k + 2 => n2 = (3k + 2)= (3k + 2).(3k + 2) =  9k+ 12k + 4 = 3.(3k+ 4k + 1) + 1 

=> n- 1 = 3.(3k+ 4k + 1)  => A chia hết cho 3

Vậy A chia hết cho 2 và 3 nên A chia hết cho 6

giải

A = n- 1 

Vì n lẻ nên nlẻ => n - 1 chẵn => A chia hết cho 2

Vì n không chia hết cho 3 nên n chia cho 3 dư 1 hoặc dư 2

 Nếu n chia cho 3 dư 1 thì n = 3k + 1 => n2 = (3k + 1)= (3k + 1).(3k + 1) = 9k+ 6k + 1 = 3(3k+ 2k) + 1 => n2 - 1 = 3(3k+ 2k) chia hết cho 3 => A chia hết cho 3

 Nếu n chia cho 3 dư 2 thì n = 3k + 2 => n2 = (3k + 2)= (3k + 2).(3k + 2) =  9k+ 12k + 4 = 3.(3k+ 4k + 1) + 1 

=> n- 1 = 3.(3k+ 4k + 1)  => A chia hết cho 3

Vậy A chia hết cho 2 và 3 nên A chia hết cho 6

 hok tốt

14 tháng 7 2017

+ Do a lẻ => a^2 lẻ => a^2 - 1 chẵn => a^2 - 1 chia hết cho 2 (1)

+ Do a không chia hết cho 3 => a = 3k + 1 hoặc a = 3k + 2 (k thuộc N)

Nếu a = 3k + 1 thì a^2 = (3k + 1).(3k + 1) = (3k + 1).3k + (3k + 1) = 9k 2 + 3k + 3k + 1 chia 3 dư 1

Nếu a = 3k + 2 thì a^2 = (3k + 2).(3k + 2) = (3k + 2).3k + 2.(3k + 2) = 9k 2 + 6k + 6k + 4 chia 3 dư 2

=> a^2 chia 3 dư 1 => a^2 - 1 chia hết cho 3 (2)

Từ (1) và (2), do (2;3)=1 => a 2 - 1 chia hết cho 6

nhe

12 tháng 7 2015

đầy. 3,5,7 và 13,15,17,hay 15,17,19, vân vân

20 tháng 9 2019

a)Các số tự nhiên chia hết cho 9 là :450;405;540;504

b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534

13 tháng 7 2017

\(a^2-1=a.a-1\)

\(a.a\) là tích của hai số lẻ (theo giả thiết) giống nhau nên có chữu số tận cùng là số lẻ.

Do đó \(a.a-1\) có chữ số tận cùng là số chẵn.

\(\Rightarrow\) \(a.a-1⋮2\left(1\right)\)

Giả sử : \(a=3k+1\) ( a là số lẻ)

\(\Rightarrow a.a-1=\left(3k+1\right)\left(3k+1\right)-1\)

\(=9k^2+3k+3k+1-1=9k^2+3k+3k⋮3\)

\(\Rightarrow a.a-1⋮3\)

Giả sử : \(a=3k+2\) (a là số lẻ)

\(\Rightarrow a.a-1=\left(3k+2\right)\left(3k+2\right)-1\)

\(=9k^2+6k+6k+4-1=9k^2+6k+6k+3⋮3\)

\(\Rightarrow a.a-1⋮3\) (2)

Từ (1) và (2), ta thấy:

\(a.a-1⋮2\)\(a.a-1:3\)

\(\Rightarrow a.a-1⋮6\Rightarrow a^2-1⋮6\left(đpcm\right)\)

~ Học tốt ~

13 tháng 7 2017

Nguyễn Thanh Hữu

+)Do a lẻ => a2 lẻ => a2 - 1 chẵn => a2 - 1 chia hết cho 2 ( 1 )

+) Do a không chia hết cho 3 => a = 3k hoặc a = 3k + 2 ( k thuộc N )

Nếu a = 3k + 1 thì a2 = ( 3k + 1 ) \(\times\) ( 3k + 1 )

= ( 3k + 1 ) \(\times\) 3k \(\times\) ( 3k + 1 )

= 9k2 + 3k + 3k + 1 chia 3 dư 1 .

Nếu a = 3k + 2 thì a2 =( 3k + 2 ) \(\times\) ( 3k + 2 )

= ( 3k + 2 ) \(\times\) 3k + 2 \(\times\) ( 3k + 2 )

= 9k2 + 6k + 6k + 4 chia 3 dư 2

=> a2 chia 3 dư 1 => a2 - 1 chia hết cho 3 ( 2 )

Từ (1) và (2) , do (2 ; 3 ) =1 => a2 - 1 chia hết cho 6 .

bạn bấm vào dòng chữ xanh này nhé

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

21 tháng 10 2015

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

21 tháng 10 2015

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)


b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)

8 tháng 10 2022

n:2:2n= nhiêu